US009087365B2

a2 United States Patent

Strom

US 9,087,365 B2
*Jul. 21, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

WEIGHT BASED IMAGE PROCESSING

Applicant: TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)
(72)

Inventor: Jacob Strom, Stockholm (SE)

(73) TELEFONAKTIEBOLAGET L M

ERICSSON (PUBL), Stockholm (SE)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 41 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/826,578

@

(22) Filed: Mar. 14,2013

(65) Prior Publication Data

US 2013/0287295 Al Oct. 31, 2013

Related U.S. Application Data

Continuation of application No. 11/915,669, filed as
application No. PCT/SE2006/000613 on May 24,
2006, now Pat. No. 8,457,417.

(63)
(30) Foreign Application Priority Data

.................................... 0501260.4
PCT/SE2005/001070

May 27, 2005
Jul. 1, 2005

(SE)
(WO) oo
(51) Int.CL
GO6T 9/00
HO4N 19/176
HO4N 19/186
USS. CL

CPC

(2006.01)
(2014.01)
(2014.01)
(52)
................ GOG6T 9/00 (2013.01); HO4N 19/176

(2014.11); HO4N 19/186 (2014.11); GO6T
9/001 (2013.01)

ST VALUES

IDETERMINE COLOR

(58) Field of Classification Search
USPC ....ccovueneee 382/162, 166, 232, 234, 235, 239,
341/51, 55, 348/234, 253; 375/E7.084,
375/E7.129, E7.137, E7.166
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,682,249 A
5,808,621 A

10/1997 Harrington et al.
9/1998 Sundaresan

(Continued)

FOREIGN PATENT DOCUMENTS

EP
EP

1174824 A2 1/2002
1349394 A2 10/2003

(Continued)
OTHER PUBLICATIONS

Fenney, Simon: “Texture Compression using Low-Frequency Signal
Modulation”. Graphics Hardware (2003). XP-002637329.

(Continued)

Primary Examiner — Anh Do

(57) ABSTRACT

In an image-encoding scheme, an input image is decomposed
into several image blocks comprising multiple image ele-
ments. The image blocks are encoded into encoded block
representations. In this encoding, color weights are assigned
to the image elements in the block based on their relative
positions in the block. At least two color codeword are deter-
mined, at least partly based on the color weights. These code-
words are representations of at least two color values. The
original colors of the image elements are represented by color
representations derivable from combinations of the at least
two color values weighted by the assigned color weights.

12 Claims, 15 Drawing Sheets

SH T WEIGHTS

PROVIDE COLOR

L6

8424 COLOR

CALCULATE

REPRESENTATIONS

GENERATE

L5

3
L]
$43~{ DECODED IMAGE }

REPRESENTATION :




US 9,087,365 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5,956,431 A 9/1999 Iourcha et al.

6,078,689 A 6/2000 Kunitake et al.

6,266,165 Bl 7/2001 Huang et al.

6,331,902 B1  12/2001 Lin

8,144,981 B2* 3/2012 Petterssonetal. ............ 382/166
8457417 B2* 6/2013 Strom ........cccoecevernn 382/232

2004/0151372 Al 8/2004 Reshetov et al.
FOREIGN PATENT DOCUMENTS

RU 2024214 C1
WO WO 99/18537

11/1994
4/1999

OTHER PUBLICATIONS

Strom, et al.: “PACKMAN: Texture Compression for Mobile
Phones”. Fricsson Research, Lund University/Ericsson Mobile Plat-
forms. 2004.

Strom, et al.: “iPACKMAN: High-Quality, Low-Complexity Texture
Compression for Mobile Phones”. Ericsson Research, Lund Univer-
sity. 2005.

Akenine-Moller, et al.: “Graphics for the Masses: A Hardware
Rasterization Architecture for Mobile Phones”. Chalmers University
of Technology.

Petterson, et al.: “Texture Compression: THUMB—Two Hues Using
Modified Brightness”. (2005) XP002396817.

* cited by examiner



U.S. Patent

Jul. 21, 2015 Sheet 1 of 15

1

i
1} DECOMPOSE 4
: IMAGE :
4

US 9,087,365 B2

ASSIGN COLOR

3 .
527 WEIGHTS

Fig. 1

- DETERMINE COLOR
o CODEWORDS

REPRESENT

S M ORIGINAL COLORS

P _,A......----m\
I

d ™
/

& STOP )
7
s n et

p
610

600

Fig. 2



U.S. Patent

Jul. 21, 2015 Sheet 2 of 15 US 9,087,365 B2
P 600
) ®
Ry R,
~
610
® @
R, R,
Fig. 3
/// {"{}O
® ®
Ry Ry
~
610}
Ry




US 9,087,365 B2

Sheet 3 of 15

Jul. 21, 2015

U.S. Patent

06L

.

00

9 814
OcL 0CL o1
o~ s o~
qH0AAHAdOD FHOMFA0D QHOMAAOD
HOTOO Gy HOTOD GNT HOTOOD 1S
B4
OvL OvL 0CL Ol
o P P o~
(TAOMAGO0D MAOMTA0D Ga0Maad00 FHEOMIA0D
JOTOO HIY HOTOD ¢ HOTOD ANT JOTOD IST




U.S. Patent Jul. 21, 2015 Sheet 4 of 15 US 9,087,365 B2

600
| -]
® @
Ry §Rﬁ
4
6104
—®
Fig. 7
- 600
//
Ry?
. s
~ Ro Ry
6104

Fig. 8



US 9,087,365 B2

Sheet 5 of 15

Jul. 21, 2015

U.S. Patent

T
JOILS 6 Big
‘lﬁ:\(\\\
T "B1.
Ol o1 $$ d9LS OL
SAANT -
AAOW AiACEg | 088 FOWET AZININIA
LVHL SCHOMIA0D
ANV LDTTIS
- . Tere
NOLLYINASTIITY £1s
QESSTYANGD 8T8 |
LOATAS I 1 yowwa quols
“zis
NOWMA LV TV MOWNT 21v 10Ty NOWMEZ 41vINYTVa MOMST AIvInYIvD | | O 4LVINILST
(s 975 crs- vzs- Lig

HOOW HiY
OL DNIGUEOD0OV

HAOW (J¥L
OL DNICHOD)DY

HGOW ANT
QL ONIEROO0V

HOOW
ST OL ONIGYODDY

SAOMIGOD
OO0 HLVAIANYD

MOO1E SSHEdNGD WIOTY SSARINOD L\ MO0 TH SSHRAIWNOD MOO1Y SSHHINOD E2AT48
€78 J mmm_\w 18 ﬂmmm H.Em
_ 5 J415 WOY¥4
18 JHILS WOYA



US 9,087,365 B2

Sheet 6 of 15

Jul. 21, 2015

U.S. Patent

1781

&pS 4318 0L

0z 814

£S d3LS OL

NOLLV INGSHYdH
A TOD LIATIS

M £9S

NOLLVINASTNATY | . .
OO0 divuangn | TS

LT
YAITON o
ALISNALNT Loaras] o8

L3S WHIAIGOW
ALISNAINI o128
JAIAOUd

AYIVA .
W00 AntdaLaql S

058 dd.LS WOHA

SNOLLVINASHYdHY
HOTOD ALVEINID

AT

HIVA
JOTOD ANODES
ANINGSLHA

™-198

AMVIVA HOTOD
LS¥L] INIWYELEA

98

068 d3.LS WOHA

{181y

P

LTS FO LTS "STS dALS OL

KXAANI
ALISNAINIZHOTON
L1od71dS

S TES

GHOMHA0D
ALISNALNI GOW
1O FATAGHUL

o 1ES

SAOMIAOD
JOTOD ANIWEALAG]

A OES

IS 4318 WO¥4



U.S. Patent Jul. 21, 2015 Sheet 7 of 15 US 9,087,365 B2

/“’"‘i
e
e
e ¥
S A
N
~oe )
+9%®)
s @,
R
/8 8 -4
& .
N
Fig. 12A

Fig. 12B



U.S. Patent Jul. 21, 2015 Sheet 8 of 15 US 9,087,365 B2

Ry
,x”!@‘:#\f
N OBy
S g%
-l
/8 R
&>
{woo}“wét
~. rd
B
Fig. 13A
R
B

Fig. 13B



US 9,087,365 B2

Sheet 9 of 15

Jul. 21, 2015

U.S. Patent

L1 81
9cL L TEL 9CL YL OBL TTL ML 6L 064 FiL  O6L TiL 061
e Py P, ot d T kD
3 [ - $ | o ( .
,._ J. g w

S— I»\\\ = HTL el e 01L ~ l/.ao.m\

91 14

0L 084 0¢L 974 FTL CTL OILOBL 064 il ZiL G@h

h i ok d o d T T ) \3.\
SADANI HOTON (HIN D 19 €3] 14 0d 05

/\ QWN S 12 Nt\ ™

004
S1 8
(9L 084 054 9TL PTL TZL SIL PEL 064 TlL 0oL
Poned e U e o Y s e Y s N G e e
SHMONI EOTOD (IOWN, (4 23] i 04 08 vty
Y f |
N0 \ //.; (1L LM\ :/@ch
b1 B
9L 084 0LL90SL <®wh mrn L viL  ¥iL TiL TiL
facd N el e
SHIANT ALISNALNI CHAL NI LN




U.S. Patent Jul. 21, 2015 Sheet 10 of 15 US 9,087,365 B2

( START \\}

DETERMINE COLOR
VALUES

540+

PROVIDE COLOR

SH™  WERIGHTS Lo

LS

CALCULATE
S427A COLOR
REPRESENTATIONS

i GENERATE !
$43~_! DECODED IMAGE |
{ REPRESENTATION §



US 9,087,365 B2

Sheet 11 of 15

Jul. 21, 2015

U.S. Patent

61 814

tPS dHIS OL

PES

AAON

AJOW

AN

ATOW

168

HI¥ NI YDO0T14 GNTZ NI D014 QNT NI YIDOTE IS NI NOOTH
SEAUINODAA SSHAIINODHEA SSHMIWOHA SSHUANODAA
e
mmmk 788
HAOW
CHASSHYIWNODAG 0SS
IDATES




U.S. Patent Jul. 21, 2015 Sheet 12 of 15 US 9,087,365 B2

\
[
| \ 100
| -~
] \
11
[ . b
1O 120
i !
‘e k - &
GRAPHIC SYSTEM L,?»O
IMAGE 220
DECODER ol
150
r,_,-’
CPU 200
J N "
IMAGE :jU
ENCODER
STORAGE 140
-/
. J

Fig. 22



US 9,087,365 B2

Sheet 13 of 15

Jul. 21, 2015

U.S. Patent

€T 314

Lo
4

HAZIINVAD
JO100

01t
ot

HANOISSY
LHOEM

AHACGOONT AD0TH

HHAODIND
HOOT1Y

\iu\\ .
00¢ e

dHSOINODIA
DV

HAGOONT FOVIAL




U.S. Patent

Jul. 21, 2015 Sheet 14 of 15 US 9,087,365 B2
BLOCK ENCODER 340
WEIGHT 310 MODIFIER
ASSIGNER - QUANTIZER
500
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, /,‘,“
- T
COLOR N INDEX
QUANTIZER MODFIER SELECTOR
TABLE
/""j f“J
320 350
MODE MODE INDEX
SELECTOR MANAGER
= ~
360 370
o~
300 .
Fig. 25
BLOCK DECODER
410 430 450
Famed Faect Pmed
COLOR COLOR COLOR
GENERATOR CALCULATOR SELECTOR
420 440 460
ot i o~
WEIGHT COLOR MODE
MANAGER MODIFIER SELECTOR
470 B
r"“‘“'r .
MODIFIER 500
MANAGER MODIFIER
TABLE
/"‘J
400




US 9,087,365 B2

Sheet 15 of 15

Jul. 21, 2015

U.S. Patent

WASOINOD |
HOVIN] |

JAA0OHA
A2IY

LT 814
UAOVNYIN
JHOHM
\\JJ\
Oy
HOLVINOTIVD HOLVEANTD
HOTOD HOTOD
\:x.\ \?.\
oLd 11187
HHAO0H4 HM07d
\a(\
DOP

dOLE TS
A0

YHAOHA HOVIN




US 9,087,365 B2

1
WEIGHT BASED IMAGE PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 11/915,669, filed Nov. 27,2007, now U.S. Pat. No. 8,457,
419, which was a 371 National Stage of International Appli-
cation No. PCT/SE2006/000613, filed May 24, 2006, which
claims the benefit of Swedish Application No. 0501260.4,
filed May 27, 2005 and PCT/SE2005/001070 filed Jul. 1,
2005, the disclosures of which are incorporated herein by
reference.

TECHNICAL FIELD

The present invention generally refers to image processing,
and in particular to methods and systems for encoding and
decoding images.

BACKGROUND

Presentation and rendering of images and graphics on data
processing systems and user terminals, such as computers,
and in particular on mobile terminals have increased tremen-
dously the last years. For example, three-dimensional (3D)
graphics and images have a number of appealing applications
on such terminals, including games, 3D maps and messaging,
screen savers and man-machine interfaces.

A 3D graphics rendering process typically comprises three
sub-stages. Briefly, a first stage, the application stage, creates
several triangles. The corners of these triangles are trans-
formed, projected and lit in a second stage, the geometry
stage. In a third stage, the rasterization stage, images, often
denoted textures, can be “glued” onto the triangles, increas-
ing the realism of the rendered image. The third stage typi-
cally also performs sorting, using a z-buffer.

However, rendering of images and textures, and in particu-
lar 3D images and graphics, is a computationally expensive
task in terms of memory bandwidth and processing power
required for the graphic systems. For example, textures are
costly both in terms of memory, the textures must be placed
onor cached in fast on-chip memory, and in terms of memory
bandwidth, a texture can be accessed several times to draw a
single pixel.

In order to reduce the bandwidth and processing power
requirements, an image (texture) encoding method or system
is typically employed. Such an encoding system should result
in more efficient usage of expensive on-chip memory and
lower memory bandwidth during rendering and, thus, in
lower power consumption and/or faster rendering.

Delp and Mitchell [1] developed a simple scheme, called
block truncation coding (BTC) for image compression. Even
though their applications were not texture compression per
se, several of the other schemes described in this section are
based on their ideas. Their scheme compressed grey scale
images by considering a block of 4x4 pixels at a time. For
such a block, two 8-bit grey scale values were stored, and each
pixel in the block then used a single bit to index to one of these
grey scales. This resulted in 2 bits per pixel (bpp).

A simple extension, called color cell compression (CCC),
of BTC was presented by Campbell et al. [2]. Instead of using
an 8-bit grey scale value, the 8-bit value is employed as an
index into a color palette. This allows for compression of
colored textures at 2 bpp. However, a memory lookup in the
palette is required, and the palette is restricted in size.

15

20

30

40

45

50

2

The S3TC texture compression method by lourcha etal. [3]
is currently probably the most popular scheme. It is used in
DirectX and there are extensions for it in OpenGL as well.
Their work can be seen as a further extension of CCC. The
block site for S3TC is 4x4 pixels that are compressed into 64
bits. Two base colors are stored as 16 bits each, and each pixel
stores a two-bit index into a local color palette that consists of
the two base colors and two additional colors in-between the
base colors. This means that all colors lie on a line in RGB
space. S3TC’s compression rate is 4 bpp. One disadvantage
of S3TC is that only four colors can be used per block.

Penney [4] introduces a radically different scheme that is
used in the MBX graphics hardware platform for mobile
phones. This scheme uses two low-resolution images and
these are bilinearly upscaled during decompression. Each
pixel also stores a blendfactor between these two upscaled
images. Compression of 4 bpp and 2 bpp are described. 64
bits are used per block. The major disadvantage of Fenny’s
scheme, which makes it less attractive in real implementa-
tions, is that information is needed from neighboring image
blocks during decompression, which severely complicates
decompression.

PACKMAN is a recent texture compression method devel-
oped by Strém and Akenine-Mdller [5]. It encodes a block of
2x4 texels (pixels) into 32 bits. Only one color is used per
block, butin each pixel this color can be modified in intensity.
The major goal of PACKMAN was to allow for minimal
decompression complexity. In PACKMAN the chrominance
is heavily quantized, which may introduce block artifacts.

In order to improve PACKMAN, Strém and Akenine-M6l-
ler developed an improved compression method denoted
iPACKMAN//Ericsson Texture Compression (ETC) [6, 7]. In
iPACKMAN/ETC two 2x4 image blocks are encoded in com-
mon, which allowed for differential encoding of the colors.
This made it possible to have finer quantization of the colors,
resulting in an increase in quality of about 3 dB. Hence, this
compression method passed S3TC in terms of quality and is
currently the highest quality texture compression method/
system publicly known.

There is still a need to improve image compression and in
particular in terms of compressing and decompressing prob-
lematic image blocks having certain color characteristics that
cannot be efficiently handled by the prior art image process-
ing schemes at a high quality. Such problematic image blocks
include blocks having slowly varying transitions between two
or more colors.

SUMMARY

The present invention overcomes these and other draw-
backs of the prior art arrangements.

It is a general object of the present invention to provide an
image processing scheme that effectively can handle image
blocks having slowly varying transitions between two or
more colors.

This and other objects are met by the invention as defined
by the accompanying patent claims.

Briefly, the present invention invokes an image processing
in the form of encoding (compressing) an image and decod-
ing (decompressing) an encoded (compressed) image.

According to the invention, an image to be encoded is
decomposed into a number of image blocks comprising mul-
tiple image elements (pixels, texels or voxels). An image
block preferably comprises sixteen image elements and has a
size of 2"x2” image elements, where in and n preferably are
2.Each image element in a block is characterized by an image



US 9,087,365 B2

3

element property, preferably a color, e.g. a 24-bit RGB (red,
green, blue) color. The image blocks are then encoded.

In this (lossy) block encoding, color weights are assigned
to at least a subset of the image elements in the image block.
Atleast two color codeword that are representations of at least
two color values are then determined at least partly based on
the assigned color weights. The generated encoded or com-
pressed representation of the image block comprises the at
least two color codewords, which can be regarded as quan-
tized color values. As a consequence, the original colors of the
image elements in the image block will be represented by
color representations derivable from the at least two color
values, in turn obtainable from the at least two color code-
words. In addition, the color representations of the image
elements in the at least one subset are derivable from combi-
nations of the at least two color values weighted by assigned
color weights.

This way of representing image blocks effectively handles
smoothly varying transitions of at least two colors within an
image block and such transitions and color slopes extending
over neighboring blocks. Other advantages offered by the
present invention will be appreciated upon reading of the
below description of the embodiments of the invention.

During decoding or decompression, the at least two color
values are determined based on the at least two color code-
words. The color weights assigned to an image element to be
decoded is then. Finally, a color representation to use for this
image element is calculated based on the provided color
weights and the determined at least two color values.

The present invention also teaches systems tbr encoding
images and image blocks, systems for decoding encoded
images and image blocks and user terminals housing such
systems.

SHORT DESCRIPTION OF THE DRAWINGS

The invention together with further objects and advantages
thereof, may best be understood by making reference to the
following description taken together with the accompanying
drawings, in which:

FIG. 11is aflow diagram illustrating a method of compress-
ing/encoding an image and image block according to the
present invention;

FIG. 2 is an illustration of an example of an image block
according to the present invention;

FIG. 3 is a drawing schematically illustrating assignment
of color weights according to an embodiment of the present
invention;

FIG. 4 is an illustration of a compressed representation of
an image block according to at embodiment of the present
invention;

FIG. 5 is a drawing schematically illustrating assignment
of color weights according to another embodiment of the
present invention;

FIG. 6 is an illustration of a compressed representation of
an image block according to another embodiment of the
present invention;

FIG. 7 is a drawing schematically illustrating assignment
of color weights according to a further embodiment of the
present invention;

FIG. 8 is a drawing schematically illustrating assignment
of color weights according to yet another embodiment of the
present invention;

FIG. 9 is a flow diagram illustrating an embodiment of the
determining step of FIG. 1 in more detail;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 10 is a flow diagram of additional steps of the image
encoding/compressing method of FIG. 1 according to a multi-
mode implementation of the present invention;

FIG. 11 is a flow diagram illustrating embodiments of
compressing steps of FIG. 10 in more detail;

FIG. 12A is a diagram illustrating the distribution of colors
of'image elements of an image block that advantageously can
be compressed according, to amode of the multi-mode imple-
mentation;

FIG. 12B is a diagram illustrating color representations
generated according to a mode of the multi-mode implemen-
tation and suitable for representing the colors of the image
elements illustrated in FIG. 12A;

FIG. 13 A is a diagram illustrating the distribution of colors
of image elements of another image block that advanta-
geously can be compressed according to another mode of the
multi-mode implementation;

FIG. 13B is a diagram illustrating color representations
generated according to another mode of the multi-mode
implementation and suitable fir representing the colors of the
image elements illustrated in FIG. 13A;

FIGS. 14 to 17 are illustrations of compressed representa-
tions of an image block according to the multi-mode imple-
mentation;

FIG. 18 is a flow diagram of a method of decoding/decom-
pressing a compressed image and image block according to
the present invention;

FIG. 19 is a flow diagram illustrating additional steps of the
decoding/decompressing method of FIG. 20 for a multi-mode
implementation:

FIG. 20 is a flow diagram illustrating embodiments of the
decompressing step of FIG. 19 in more detail;

FIG. 21 is a flow diagram illustrating another embodiment
of the decompressing step of FIG. 19 in more detail;

FIG. 22 schematically illustrates an example of a user
terminal with an image encoder and decoder according to the
present invention;

FIG. 23 is a block diagram schematically illustrating an
embodiment of an image encoder according to the present
invention;

FIG. 24 is a block diagram schematically illustrating an
embodiment of a block encoder according to the present
invention;

FIG. 25 is a block diagram schematically illustrating
another embodiment of a block encoder according to the
present invention;

FIG. 26 is a block diagram schematically illustrating an
embodiment of an image decoder according to the present
invent on;

FIG. 27 is a block diagram schematically illustrating an
embodiment of a block decoder according to the present
invention; and

FIG. 28 is a block diagram schematically illustrating
another embodiment of a block decoder according to the
present invention.

DETAILED DESCRIPTION

Throughout the drawings, the same reference characters
will be used for corresponding, or similar elements.

The present invention relates to image and graphic process-
ing, and in particular to encoding or compressing images and
image blocks and decoding or decompressing encoded (com-
pressed) images and image blocks.

Generally, according to the invention, during image encod-
ing, an image is decomposed or divided into a number of
image blocks. Each such image block then comprises mul-



US 9,087,365 B2

5

tiple image elements having, among others, a certain color.
The image blocks are encoded or compressed to generate an
encoded/compressed representation of the image.

When an encoded image or graphic primitive subsequently
is to be rendered, e.g. displayed on a screen, the relevant
image elements of the encoded image blocks are identified
and decoded. These decoded image elements are then used to
generate a decoded representation of the original image or
graphics primitive.

The present invention is well adapted for usage with three-
dimensional (3D) graphics, such as games, 3D maps and
scenes, 3D messages, e.g. animated messages, screen savers,
man-machine interfaces (MMIs), etc., but is not limited
thereto. Thus, the invention could also be employed for
encoding other types of images or graphics, e.g. one-dimen-
sional (1D), two-dimensional (2D) or 3D images.

In 3D graphics processing, typically several triangles are
created and the corresponding screen coordinates of the cor-
ners of these triangles are determined. Onto each triangle, an
image (or portion of an image), or a so-called texture, is
mapped (“glued”). The management of textures is, though,
costly for a graphic system, both in terms of utilized memory
for storage of textures and in terms of memory bandwidth
during, memory accesses, when textures are fetched from the
memory. This is a problem particularly for thin clients, such
as mobile units and telephones, with limited memory capacity
and bandwidth. As a consequence, a texture or image encod-
ing, scheme is often employed. In such a scheme, a texture is
typically decomposed or divided into a number of image
blocks comprising multiple texels. The image blocks are then
encoded and stored in a memory. Note that the size of an
encoded (version of an) image block is smaller than the cor-
responding size of the uncoded version of the image block.

In the present invention the expression “image element”
refers to an element in an image block or encoded represen-
tation of an image block. This image block, in turn, corre-
sponds to a portion of an image or texture. Thus, according to
the invention, an image element could be a texel (texture
element) of a (1D, 2D, 3D) texture, a pixel of a (1D or 2D)
image or a voxel (volume element) of a 3D image. Generally,
an image element is characterized by certain image-element
properties, such as a color value. Furthermore, in the follow-
ing, the term “image” is used to denote any 1D, 2D or 3D
image or texture that can be encoded and decoded by means
of the present invention, including but not limited to photos,
game type textures, text, drawings, etc.

The present invention provides an image processing that is
in particular suitable for compressing and decompressing
images and image blocks with slowly varying transitions
between at least two colors. In the prior art schemes, dis-
cussed in the background section, a color palette comprising
typically four color values is formed in color space by means
of color codewords (S3TC) or color codeword(s) and inten-
sity/color modifier codeword(s) (PACKMAN and iPACK-
MAN/ETC). Each image element then has a color index
associated with one of the colors in the color palette. With
such a solution, it is generally hard to processing image
elements with slowly varying color transitions.

In clear contrast to these prior art schemes, the present
invention assigns different color weights to image elements in
an image block. Thereafter, colors to use for the image block
are determined based at least partly on the assigned color
weights. This means that the original colors of the image
elements will be represented by color representations deriv-
able from combinations of the determined colors weighted by
the assigned color weights. This potentially allows utilizing
unique color representations, depending on the assigned

10

15

20

25

30

35

40

45

50

55

60

65

6

color weights, for each image element in the block, which in
turn means a much larger color palette. In addition, the color
weights can be set so that also problematic blocks having
slowly varying color transitions can be represented at a high
image quality.

Compression

FIG. 1 illustrates a (lossy) method of encoding an image
according to the present invention in a first step S1, the image
is decomposed or divided into a number of image blocks.
Each such image block then comprises multiple image ele-
ments. In a preferred embodiment of the invention, an image
block comprises sixteen image elements (pixels, texels or
voxels) and has a size of 2"x2” image elements, where
m=4-n and n=0, 1, 2, 3, 4. More preferably, m and n are both
2. It could also be possible to utilize an image block of size
2™x2" or 2"'x2"x2¥ image elements, where m, n, p are zero or
positive integers with the proviso that not all of m, n, p may
simultaneously be zero. FIG. 2 schematically illustrates an
example of an image block 600 with sixteen image elements
610 according to the present invention. In an alternative
embodiment of the present invention, the image is decom-
posed into a number of image sub-blocks, preferably having
a size of 2x4 or 4x2 image elements. In such a case, two such
sub-blocks could be handled together during compression to
form a 4x4 block 600 as illustrated in FIG. 2. Returning to
FIG. 1, the whole image block is preferably decomposed into
(non-overlapping) image blocks in step S1. However, in some
applications, only a portion of an image is encoded and, thus,
only this portion is decomposed into image blocks.

The following steps S2 and S4 perform an encoding or
compression of the image blocks. Firstly in step S2, color
weights are assigned to at least a subset of the image elements
in the image block, which is schematically illustrated by the
line L1. The color weights are preferably determined based
on the relative position the image elements of the at least one
subset have in the image block. These color weights will be
used during decompression for weighting different colors
determined for the image block to generate color representa-
tions used for representing the original (“true”) colors of the
image elements. For example, assume that two colors (C, and
C,) are determined for the current image block. The color
weights assigned in this step S2 can then be w,* and w ™ for
image element having position (x,y) in the image block. Dur-
ing compression, the image representation of this image ele-
ment will be w;*Cy+w,”C,, thus a weighted combination,
in this case a linear combination, of the two colors.

As is well known in the art a color typically comprises
multiple color components, most often three color compo-
nents depending on the proprietary color space utilized. For
example, the colors could be RGB (Red, Green, Blue) colors,
colors in the YIN space or YCrCb space, or any other propri-
etary color space used in image and graphics processing and
management, in such a case, the multiple color weights
assigned in step S2 could regarded as a color weight vector

Xy Xy Xy
W = [WRO Weo WBO}

X Xy x|
WRL War Wpi

In this case, the individual component elements in a weight
vector could be set individually or at least could be equal. In
the case Wy =wz,"=ws, ™, the weight vector only com-
prises two weights



US 9,087,365 B2

wg
wy

per image element in this illustrative example.

The color weights are preferably assigned for each image
element in at least one subset of the image elements in the
blocks, which is represented by the line 1. In a first embodi-
ment, the image block comprises N image elements, N is an
integer larger than one, and the subset comprises M image
elements, where 0<M<N. This means that no color weights
are assigned for the remaining N-M image element(s). In that
case, the original color of this (these) remaining image ele-
ment(s) is represented by one of the color codewords to be
determined for the image block. However, this basically cor-
responds to setting all component elements of one of the color
weight vectors to 1 and setting all component elements of the
other color weight vector(s) to 0.

Therefore, in another preferred implementation or the
present invention, color weights are assigned to all image
elements in the block by basically repeating the step S2 for
each image element. In this embodiment, at least on the color
weights assigned to at least one image elements is preferably
different from 0, 1 and -1.

In a next step S3, at least two color codewords are deter-
mined for the image block based on or using the assigned
color weights. These at least two color codewords are repre-
sentations of at least two color values. As noted above, the
color values could be RGB (Red, Green, Blue) colors, colors
in the YUV space or YCrCb space, or any other proprietary
color space used in image and graphics processing and man-
agement.

The color codewords are preferably in the same color for-
mat (space) as the image. However, in some cases, it may be
useful to convert the image to a different color space. i.e.
having the color codewords in a first color space and the
original image in a second different color space.

In a first embodiment of the present invention, two color
codewords are determined in this step S3 based on the
assigned color weights. However, in a preferred implementa-
tion of the present invention three, or sometimes four or mare,
color codewords are instead determined based on the color
weights. These multiple codewords then represent three, four
or more, color values. According to the present invention, it is
possible, by basing the color codeword determination on so
the assigned color weights, to determine color codewords
resulting in high image quality and allowing generation of
color representations having slowly varying color transitions.

In a next step S4, the original colors of the multiple image
elements in the block are represented by color representations
derivable from the at least two color values, in turn being
represented by the at least two color codewords determined in
step S3. In addition, color representations of the image ele-
ments in the at least one subset, i.e. those image elements for
which color weights were assigned in step S2, are derivable
from combinations of the at least two color values weighted
by the assigned color weights.

If the at least one subset comprises a first subset of the
image element in the block, the color representations of these
image elements are derivable from combinations of the at
least two color values weighted by the assigned color weights.

10

15

20

25

30

35

40

45

50

55

60

8

However, color representations of image elements in a second
remaining subset of the image elements in the block are
selected directly from the color values and therefore do not
constitute combinations of multiple color values.

The steps S2 to S4 are preferably repeated for all image
blocks provided during the decomposing of step S1 (sche-
matically illustrated by line [.2). The result is then a sequence
or file of encoded image blocks. The encoded image blocks
(encoded representations of the image blocks) could be
ordered in a file from left to right and top to bottom in the same
order in which they were broken down in the block decom-
posing of step S1. The method then ends.

The encoded image could be provided to a memory for
storage therein until a subsequent rendering, e.g. display, of
the image. Furthermore, the encoded image could be pro-
vided as a signal of encoded block representations to a trans-
mitter for (wireless or wired) transmission to another unit.

FIG. 3 is a schematic illustration of an image block 600 in
an image or texture to be compressed according to the present
invention. In this first implementation of the present inven-
tion, four color codewords are to be determined for the image
block 600. Each of the four color codewords represent a
respective color value, the red components of which are
denoted by Ry, R;, R, and R;. This embodiment basically
allows for a bilinear upscaling but where all the colors needed
for the bilinear upscaling are stored as a compressed repre-
sentation for the image block. In this embodiment, the image
elements 610 forming the corners of the image block 600
have color weights of only ones and zeros. Table 1 illustrates
the color weights assigned to the image elements 610 in the
block according to this embodiment of the present invention.

TABLE 1

color weights

Position (x, y) Color 0 Color 1 Color 2 Color 3
0,0 1 0 0 0
(1,0) 24 ) 0 0
(2,0) ) 24 0 0
3,0 0 1 0 0
0, 1) 24 0 ) 0
(1, 1) Va 2% 2% Yo
2,1 ] 4% Yo %
3, 1) 0 24 0 Vs
0,2) ) 0 24 0
(1,2) ] Yo 4% %
(2,2) Yo 2% 2% Y%
(3,2) 0 Y4 0 EE
©,3) 0 0 1 0
(1,3) 0 0 24 Vs
2,3) 0 0 Y4 %
(3,3) 0 0 0 1

This means that the color representations of the image
block illustrated in FIG. 3 and having assigned color weights
according to Table 1 above will have red components accord-
ing to Table 2 below.



US 9,087,365 B2

TABLE 2
color combinations
Ro 2 1 1 2 Ry
§R0 + §R1 §R0 + §R1
2R +1R 4R +2R +2R +1R 2R +4R +1R +2R 2R +1R
R0+ 3R gRot gRitgRe+5Rs gRotgRi+gRa+5Rs 3™+ 38
1R +2R 2R +1R +4R +2R 1R +2R +2R +4R 1R +2R
R0+ 3R gRot gRitgRe+5Rs gRotgRi+gRa+5Rs 3™+ 38
Ry ZR 1R 1R ZR R3
3Rtz 3t

The blue and green components are preferably handled in
the same way, i.e. basically by exchanging R, with B, or G,
where z=0, 1, 2, 3.

As can be seen from Table 2, the red (green and blue) color
components of twelve of the image elements are derivable as
weighted linear combinations of at least of the color values
(R, Ry, R,, R;) represented by the four color codewords.
However, the red (green and blue) color components of the
four corner image elements are each derived directly from
one of the color values.

In this embodiment, when one move along the firstrow (R,
to R, ), the third row (R, to R;), the first column (R, to R, ) and
the third column (R, to R;) in Table 2, the red color compo-
nent of the color representations of the image elements in
these tows and columns change monotonically (unless the
two end values are equal). For example, if R;>R,, the red
component value increases monotonically along the first row,
i.e. when moving from image element (0,0) to image element
(0,3). Correspondingly, if R,<R,, the red component value
decreased monotonically along the first column (from image
element (0,0) to (3,0)). If the same color weights are used also
for the green and/or blue color components also these will
change monotonically for these row and columns. In the
present invention, a row or column is denoted “one-dimen-
sional array of image elements”. This means that at least one
color component of color representations change monotoni-
cally along at least one one-dimensional array of image ele-
ments. This allows for smooth transitions of colors and there-
fore image blocks having such color distributions can be
represented by the present invention at a high image quality.

FIG. 4 illustrates a compressed representation 700 of the
image block illustrated in FIG. 3 that has been compressed
according to an embodiment of the present invention. The
representation 700 (encoded or compressed image block)
comprises a first color codeword 710, a second color code-
word 720, a third color codeword 730 and a fourth color
codeword 740. Note that the mutual order of the codewords
710,720,730, 740 of the encoded image block 700 may differ
front what is illustrated in the figure.

The color weights assigned to image elements in the block
are in this case pre-defined and will be used for all image
blocks of the image compressed according to this embodi-
ment of the present invention. This means that if all image
blocks of an image are compressed according to the present
invention, the color weights listed, in Table 1 will be used for
all image blocks. However, note that the four color codewords
can be different thr different blocks, thereby effectively
resulting in different color representations for the image
blocks.

Itis however anticipated by the present invention that infor-
mation of the color weights assigned to image elements in the

20

25

30

35

40

45

50

55

60

65

image block can be included as a part of the compressed block
representation 700. For example, assume that there exist mul-
tiple weight sets that can be used for the image blocks. Each
such weight set then comprises color weights assigned to
image elements of at least one subset of the elements in the
block. A first such weight set can include the color weights
listed in Table 1 above. A second set can then have different
weights for at least one of these image elements. In such a
case, the compressed block representation 700 preferably
comprises a weight set index or weight codeword represent-
ing the color weight set used for the current image block. A
single bit (0,,, and 1,,) can be used as weight codeword to
discriminate between two weight sets, whereas two or more
bits are required if more than two sets are available. In such a
solution, different image blocks of an image can be com-
pressed using different color weight distributions.

If 64 bits are assigned for the compressed image block 700,
16 bits can be used per color codeword 710, 720, 730, 740 and
each color codeword 710, 720, 730, 740 can be in the form of
RGBS565. More bits are preferably spent on the green com-
ponents since the green component gives a disproportionate
contribution to the perception of intensity.

However, the present invention is, as will thoroughly be
discussed herein, preferably used as an auxiliary mode to the
iPACKMAN/ETC scheme mentioned in the foregoing. In
such a case, only 57 bits are available for encoding the four
color codewords 710, 720, 730, 740 (the remaining seven bits
will be used as mode index for discriminating between this
auxiliary mode, iPACKMAN/ETC and other auxiliary
modes). Four color codewords 710, 720, 730, 740 with three
components each need to be encoded using only 57 bits and a
possible solution could be to use a RGB554 format, resulting
in 56 bits in total. The remaining bit can be used as weight
codeword or boost one of the color components of one of the
codewords 710, 720, 730, 740.

The embodiment present in FIGS. 3 and 4 and Table 1 has
adrawback in that the color resolution obtainable for the color
codewords 710, 720, 730, 740 is rather low, especially when
employing the present invention as a complement to iPACK-
MAN/ETC and each codeword 710, 720, 730, 740 is in the
format of RGB554. In this case, particularly the low resolu-
tion of the blue component will give rise to artifacts.

In a preferred implementation of the present invention, a
plane is instead preferably used to approximate the color
surface and provide the color weights instead of bilinear
function. This is schematically illustrated. In FIG. 5. Com-
pared to FIG. 3 and the bilinear embodiment described above,
only three color codewords are determined per image block
600. This means that three color values are represented by
these codewords and in FIG. 5, the red components (R, R,
R,) of these color values have been illustrated.



US 9,087,365 B2

11

The color representations and color weights of the image
elements 610 in the image block 600 can be calculated using
the following formula:

y

x y v x
R(X,y)=§(RH—R0)+§(RV—R0)+R0 wo =1—§—3

x v v X
Glx, y) = §(GH -G+ g(Gv -G+ Gy wyy = 3

x y Y
B(x, y) = §(BH = Bo)+ g(Bv = Bo)+ Bo wy = 3

This means that the color representations of the image
elements 610 in positions (0,0), (0,3) and (3,0) can be directly
selected from the color values represented by the three code-
words, resulting in (R, G,, B,) for image element (0,0), (R,
Gy, By for image element (3,0) and (R, G, B;) for image
element (0,3) in this illustrative example. This corresponds to
the following color weights to the these image elements
w=[1 0 0], w*°=[0 1 0] and w>*=[0 0 1].

The color weights assigned to image blocks compressed
according to this embodiment of the present invention are
distributed among the image elements according to the Table
3 below.

TABLE 3

color weights

Position (x, y) Color 0 Color H ColorV

(0, 0) 1 0 0
(1,0) Ea ) 0
(2,0) ) Ea 0
(3,0) 0 1 0
0, 1) EE 0 Vs
(1, 1) ) ) )
2,1) 0 % Vs
3, 1) - 1 Vs
0, 2) Vs 0 EE
(1,2) 0 3 %
2,2) - Ea Ea
(3,2) -2 1 EE
(0, 3) 0 0 1
(1,3) - ) 1
(2,3) - Ea 1
3,3) -1 1 1

This means that the color representations of the image
block illustrated in FIG. 5 and having assigned color weights
according to Table 3 above will have red components accord-
ing to Table 4 below.

TABLE 4

10

15

20

25

30

35

40

45

12
The blue and green components are preferably handled in
the same way, i.e. basically by exchanging R_ with B_ or G,
where z=0, 1, 2, 3.
Also in this case the color components increase or decrease
monotonically when moving along the first row and first
column in Table 4.

FIG. 6 illustrates a compressed representation 700 of the
image block illustrated in FIG. 5 that has been compressed
according to this embodiment of the present invention. The
representation 700 (encoded or compressed image block)
comprises a rust color codeword 710, a second color code-
word 720 and a third color codeword 730. Note that the
mutual order of the codewords 710. 720, 730 of the encoded
image block 700 may differ from what is illustrated in the
figure.

The color codewords 710, 720, 730 can now be represented
by the RGB676 color quantization, resulting ma total size for
the three codewords of 57 bits. This means that this embodi-
ment can advantageously be used as a complement and aux-
iliary mode to iPACKMAN/ETC as described above.
RGB676 allows for a higher resolution as compared to the
previous (RGB554) embodiment. Alternatively, if the present
invention is used as a stand-alone scheme, the color code-
words 710, 720, 730 can be represented as RGB777 and the
remaining bit can be used as e.g. weight codeword or boost a
color component of one of the codewords 710, 720, 730.

Instead of employing three color codewords 710, 720, 730
allowing calculation of a color value directly from a code-
word 710, 720, 730, so-called differential codewords can be
used. In such a case, the first color codeword 710 can be
determined as described above, i.e. comprising three quan-
tized color components, e.g. in the form of RGB777. The first
color value (R, G, B,) can then be obtained directly from
this first codeword 710 by expanding the quantized color
components. The other two codewords 720, 730 instead code
a distance in color space from this first color value. Thus, the
two codewords 720, 730 could represent dR,dGdB 666
and dR,dG,dB 666, where each of the components dW_,
W=R, G, B and z=H, V, represents a number in the interval
[-31, 32]. The other two color values are then obtained
according to the following formula:

color representations

Ro 2R + 1R 1R + 2R
37T 30T
2 1 1 1 1 2 1
§R0 + §RV §R0 + §RH + §RV §RH + §RV
1 2 1 2 1 2 2
§R0 + §RV §RH + §RV —§R0 + §RH + §RV

Ry 2 2
——Ro + —RH +Rv

1 1
——R0+—RH +Rv 3 3

3 3

Ry

1 1
-=Rp+R =R
3 o+ H+3 v

3

2 2
-=Ro+Ry + =Ry

3

-Ro+Ry +Ry




US 9,087,365 B2

13 14
Rep=Ro+dRpy TABLE 5
Ga=GotdGoyyr color weights
5 Position (x, y) Color 0 Color H ColorV
Byyy=Bo+dB
(0,0) 1 0 0
The embodiments described in connection with FIGS. 3 (1,0) Vi 4 0
. 2,0 L L 0
and 5, however, have a few drawbacks. Firstly, several of the 23’ 0; lﬁ 32 0
assigned, color weights involve division by three or powers of 10 (0, 1) Ya 0 Vi
three (9=3%), which is rather expensive to perform when 8 3 Zz Z“ Z“
, 4 2 4
implementing the decompression in hardware. Another draw- G, 1) 0 ¥ L,
back with these patterns and color weight assignments is that ©,2) v 0 2
1 1 1
it is difficult to create ramps of constant slope. Forexample, if 15 8 ;; g 1; z 1; 2
Rz, Gy By in one block is set to Ry, Gy, B, in the previous (3: 2) Y Yy Ly
block, there will be two image elements having a same color ((1)’ i) 13 3 Z +
representation next to each other, breaking the slope. Thus, 22 3; i 1/2 3 /:
although smooth color transition can be represented at a high 20 (3,3) ) Ya Ya
quality within a given block, it is more difficult to encode such
a smooth color transition over neighboring image blocks. This means that the color representations of the image

FIG. 7 illustrates an embodiment of the present invention, block illustrated in FIG. 7 and having assigned color weights
where the color weight assignment is performed in a way to 25 according to Table 5 above will have red components accord-
solve the two drawbacks mentioned above. In this embodi- ing to Table 6 below.

TABLE 6
color representations
Ro 3 R 1 R 1 R 1 R 1 R 3 R
ghot g grot g grot gy
3R ! R ! R ! R ! R ! R ! R ! R 3R ! R
Fa PR R ottt gty Fa
! R ! R ! R ! R ! R ! R ! R ! R 3 R ! R
2oty gttty Ry Tt gte gty
! R 3 R ! R 3 R ! R ! R 3 R ! R 3 R 3 R
Frot gy gy B R S R L
ment, the color weights are preferably selected so that only a The blue and green components are preferably handled in
single image element 610 in the block 600 has color weights a5 the same way, i.e. basically by exchanging R, with B, or G,
constituting of a 1 and the rest 0. This means that this single where z=0, 1, 2, 3.
image element 610, preferably a corner image element, has its Also in this case, the color components increase or
original color represented by a color value derived from only decrease monotonically when moving along the first row and
one of the three color codewords. first column in Table 6.

The way of positioning the color values as illustrated in 50 The compressed block representation for this embodiment
FIG. 7, results in the following formula for calculating, the is illustrated FIG. 6 and the discussion in connection with this
color representations and color weights of the image elements figure glso apph?s to this embodlme?nt. ] o
610 in the image block 600: In this embodiment, the color weights involve division by

two or four, which is trivial to implement in hardware. In

55 addition, the embodiment allows for continuity of color slope

& I IR . (color transitions) over block limits. This is possible by set-

()= g (R = Ro)+ Z(Ry =Ro)+Ro wo' =1-7 =7 ting R, (or R) in one block to R, of the previous block, which

. O N . results in a perfect slope. A further advantage of this embodi-

() = 3(Gn = Go) + 3 (Gy = Go) + Go Wiy = 3 ment is that the precision of the color representations that are

x y o Y 60 derivable from the color codewords and the color weights

Blx.y)= 3By = Bo)+ 3By = Bo)+ Bo wy = 5 increases further since the color can change in steps of Y4
instead of V3 with each image element.

) ) ) Further embodiments based on the same theme as FIG. 7

The color weights assigned to image blocks compressed can be obtained by rotating the positions of Ry, R and Ry a
according to this embodiment of the present invention are ¢s quarter, a half or three quarters of a turn, respectively.

distributed among the image elements according to the Table
5 below.

Generally, in a more general context, the color weights
assigned to the image elements according to the present



US 9,087,365 B2

15

invention can be selected, so that the color values represented
by the color codewords could be regarded as all positioned
within the image block (see FIGS. 3 and 5), some are posi-
tioned within the image block and some are positioned out-
side the block (see FIG. 7) or all could be positioned outside
the block. The relative position of the color values in relation
to the block defines the (planar) equation used for obtaining
the color weights for the image elements. In a most preferred
embodiment of the present invention, all the color values are
not positioned on a same line (column/row) in the block.

It is anticipated by the present invention that color weights
can be selected to represent positions ofthe color values in the
block 600 so that the color values or points are not positioned
in the middle of image elements 610, which is schematically
illustrated in FIG. 8.

The formula for the plane will then be:

R(x,9)=2x(Rg~Ro)-2¥(Ry~Ro)+Ro3Re+3R )
G(x,9)=2x(G g~ Go)=20(Gy— G+ Go=3G+3Gyr
B(x,9)=2x(B~Bo)-2y(By~Bo)+Bo—3B+3B

and the color weights are represented by the equations:
wg¥=1-2x+2y
wgY==3+2x

wyr=3-2y

The color weights assigned to image blocks compressed
according to this embodiment of the present invention are
distributed among the image elements according to the Table
7 below.

TABLE 7
color weights
Position (x, y) Color 0 Color H ColorV

0,0) 1 -3 3
(1,0) -1 -1 3
2,0 -3 1 3
3,0 -5 3 3
0,1) 3 -3 1
(1,1) 1 -1 1
2,1) -1 1 1
3, 1) -3 3 1
0,2) 5 -3 -1
(1,2) 3 -1 -1
2,2) 1 1 -1
(3,2) -1 3 -1
0, 3) 7 -3 -3
(1,3) 5 -1 -3
2,3) 3 1 -3
(3,3) 1 3 -3

The present invention, thus, involves assigning color
weights to some or all image elements in the block and then
determining color codewords based. On the weights, where
color representations of the image elements are derivable
from weighted, using the weights assigned to the image ele-
ments, combinations of color values represented by the code-
words. This concept can of course be extended to different
number of multiple color codewords and different color
weight assignments. In a preferred implementation, at least
one weight of at least one image element is different than 0, 1
and -1. Thus, employing three color codewords, means that
color weights can be assigned so that a planar interpolation of
color values is possible. If instead four or five codewords are
employed for an image block, bilinear and Gaussian interpo-
lation can be used, respectively. In the preferred implemen-

10

15

20

25

35

40

45

50

55

60

65

16

tation, the color weights are set to reflect that at least one of
the color values represented by color codewords can be
regarded as placed outside of the image block. This allows for
good approximation of very slowly varying color—slower
than if all color values are regarded as places inside the block
(compare FIG. 5 and FIG. 7).

FIG. 9 is a flow diagram illustrating an embodiment of the
determining step of FIG. 1 in more detail. The method con-
tinues from step S2 of FIG. 1. In step S10 candidate color
codewords that are representations of candidate color values
are selected. These candidate codewords can be selected ran-
domly or be the smallest or largest possible candidate color
codewords, such as a sequence of 19 0,,,, (smallest possible
codeword, representing color value (0, 0, 0)) or a sequence of
19 1,,, (largest possible codeword, representing color value
(255,255, 255)). The three color components R, G, B can be
determined separately, i.e. basically running three parallel or
subsequent processes. The discussion below is therefore lim-
ited to only one color component.

In anextstep S11, the red color representation components
for the image elements in the block obtained with this selec-
tion of candidate color codeword components is calculated
using the assigned color weights. This corresponds to replac-
ingR,, R;and R, (Ry, Ry, R,, Ry and R,,) in the image blocks
disclosed above with the red components of the candidate
color value. The error of representing the red component of
the image elements with these candidate color representation
components are then estimated in step S11.

2
Rg
&= [wy wy w1l Ry |-RY
Ry

=0 x=0

In the error formula above, R, R, R;° represent the red
component of three candidate color values represented by the
three selected candidate color codeword components and R
is the original red color of the image element in position (X,y)
within the block. In the formula above, the color weights and
original color is image element specific, whereas the candi-
date color values are the same, for a given selection of can-
didate codeword components, for all image elements in the
block. The calculated error value is then stored in an error
memory in step S12 together with a notification of the
selected candidate color codewords.

The steps S10to S12 are repeated for difterent selections of
candidate color codeword components and if the estimated
error value is smaller than the error value stored in the error
memory, the new error value replaces the stored value and the
candidate codeword components used for calculating this
new smaller error value likewise replace the previously stored
candidate codeword components.

This procedure is performed for all possible 18 bits for the
red candidate components, resulting in 2'® steps. In addition,
the procedure is performed for the green and blue color com-
ponents, which in total involves 2'%+2*°+2*® operations. The
respective red/green/blue codeword components resulting in
the smallest error values are selected in step S13 and used as
color codewords according to the present invention. The
method then continues to step S4 of FIG. 1.

In another embodiment, a least square approach is taken
instead of an exhaustive search. This can be represented in
matrix form according to below:



US 9,087,365 B2

7% 00 00 . 00
R wo Wy Wy %
510 00 10 . 30 0
R Wy Wy Wy
= Ry
Ry

533 33 3 .33
R wo Wz wy

This can also be written as y=AX, where y is a vector
comprising the 16 original red components of the image
elements in the block, A is a matrix comprising the 3x16=48
color weights assigned to the image elements and X is a vector
comprising the red components to be determined and quan-
tized into red components of the color codewords. Thus, the
vector X should be determined. This can be done according to
the equation below:

x=(4Ta)y a4ty

The same procedure is also performed for the green and
blue color components.

It is anticipated by the present invention that other tech-
niques besides exhaustive search and least square can be used
to determine the at least two codewords per image block
according to the present invention.

As has been discussed in the foregoing, the present inven-
tion is advantageously used as a complement or auxiliary
mode to the iIPACKMAN/ETC compression scheme. In such
acase, the present invention will be used for compressing and
decompressing image blocks having slowly varying color
transitions and in particular when there is a color slope
extending over several, neighboring blocks. For other image
blocks, iPACKMAN/ETC may instead be used or another
auxiliary mode.

FIG. 10 schematically illustrates such an implementation.
The method continues from step S1 of FIG. 1. The provided
image block to be compressed is then processed according to
different schemes, typically in parallel. In other words, the
image block is in step S20 compressed according to a first
compression mode to generate a first compressed block rep-
resentation. In a next step S24, an error value representative of
representing the image block with this first compressed block
is estimated. In addition, the same image block is further
compressed according to at least one other compression
mode, three other modes in the figure. Thus, a second, a third
and a fourth compression mode is used for compressing the
block in S21, S22 and S23 to generate a second, a third and a
fourth compressed block representation, respectively. In
steps S25, S26 and S27, error values representative of repre-
senting the block with the second, third or fourth compressed
block representation are estimated. Now four or in alternative
embodiments two, three or more than four) different com-
pressed representation are available. In the next step S28, one
of'these four compressed representations is selected and used
as compressed version of the current block. This selection
step is performed based on the error values calculated in the
steps S24-S27. Thus, the compressed representation associ-
ated with the smallest error value will be selected in step S28.
In a next step S29, a mode index representative of the com-
pression mode used for generating the selected compressed
representation is provided and is included in the compressed
image block, i.e. in the bit sequence representing the image
block. This procedure is preferably performed for each image
block to be compressed. The method then ends.

This means that each image block of an image is preferably
analyzed and compressed individually, which in most typical
applications (depending on the actual image to be encoded),
results in a mosaic of image blocks compressed according to

10

15

20

25

30

35

40

45

50

55

60

65

18

the different modes. Thus, a first set of the image blocks is
compressed according to the first mode, a second set of the
blocks is compressed according to the second mode, a third
block set is compressed according to the third mode and a
fourth block set is compressed according to the fourth mode.
For other applications only one, two or three of the modes will
be used for the different image blocks.

In this embodiment, a compressed candidate block is gen-
erated per available compression mode. However, in another
embodiment, the selection of compression mode to use for a
current is block is performed prior to the actual block com-
pressions. In such a case, a first analyzing step is performed
where the original colors of the image elements in the block
and in particular their distribution in color space is investi-
gated and analyzed. The selection of compression mode is
performed based on this analysis.

This embodiment is possible since, as will be discussed
further below, the different available compression modes are
particularly suitable and effective for given block types. For
example, the scheme of the present invention is effective in
handling blocks with slowly varying, color transitions. The
iPACKMAN/ETC scheme is very efficient for handling
image blocks where the colors of the image elements have
rather similar chrominance but varying luminance. A third
possible scheme could be THUMB [8], which also can be
used as auxiliary mode to iPACKMAN/ETC. This scheme
has two modes or so-called patterns, which are adapted for
managing image blocks having two distinct chrominances
(colors).

This embodiment has the advantage that only one and not
four compressed candidate blocks need to be generated,
though at the cost of a block and color analysis and a risk of
selecting a non-optimal compression scheme.

In FIG. 10, the first compression step S20 can represent the
steps S2 to S4 of FIG. 1, i.e. assigning color weights, deter-
mining color codewords and representing the original colors
of the image elements.

FIG. 11 is a flow diagram illustrating different embodi-
ments of the other compression steps S21, S22 and S23 of
FIG. 10 according to the iPACKMAN/ETC and THUMB
schemes.

Starting with THUMP, the method continues from step S1
in FIG. 1. In a next step S30, a first and a second color
codeword are determined. The first color codeword is a rep-
resentation of a first color value and the second color code-
word is likewise a representation of a second color value. The
first and second color values are located on a first line in color
space, preferably RGB space. This first line also has a first
direction. In a next step S31, a color modifier codeword is
provided. This modifier codeword is a representation of at
least one color modifier applicable for modifying the first
color value along a second line having a second direction in
color space. By modifying the first color value with the at
least one color modifier, multiple color representations are
obtained along the second line. In this embodiment, the sec-
ond direction is different from the first line, i.e. the first line
and second line are not parallel.

A color index associated with a color representation
selected, in step S32, from 1) the multiple color representa-
tions along, the second line and ii) at least one color repre-
sentation based on the second color value. This index select-
ing step is preferably performed for each image element in the
block, which is schematically illustrated by the line [.4.

The resulting compressed block representation of this
mode will, thus, comprise the first and second color code-
words, the color modifier codeword and a sequence of color
indices.



US 9,087,365 B2

19

The above-described THUMB scheme can actually, in
turn, be run according to two modes or patterns, depending on
how the colors of the image elements are distributed in color
space. This means that THUMB occupies two of the four
different modes in FIG. 10, FIGS. 12-14B disclose in more
detail the usage of THUMB, in FIG. 12A the original (16)
colors of image elements in a block to be compressed are
depicted in color space, it is clear from the figure that the
colors are positioned in two clusters 2, 4, each containing
multiple colors. Such a color distribution is advantageously
handled with the H-pattern/mode of THUMB, which is illus-
trated in FIG. 12B.

In FIG. 12B, the first color value 10 represented by the first
color codeword and the second color value 20 represented by
the second color codeword are located on a first line 40 having
a first direction 45. Two color representations 30, 32 are
derivable from the first color value 10 using a color modifier
represented by the color modifier codeword. These two color
representations 30, 32 and the first color value 10 are posi-
tioned on a second line 12 having a second direction 15,
which second direction 15 is different from the first direction
45. In this H-pattern/mode, a color modifier represented by
the color modifier codeword is likewise used for moditying
the second color value 20 to obtain two color representations
31, 33. These two color representations 31, 33 and the second
color value 20 are positioned along a third line 22, having as
third direction 25. In the illustrated example, the second 15
and third 25 directions are parallel.

The color indices selected for the image elements are then
associated with one of the four color representations 30, 31,
32,33.

FIG. 13A is a corresponding diagram of an original color
distribution effectively handled by a T-pattern/mode of
THUMB. In the figure, the colors are positioned in two clus-
ters 2, 4 similar to FIG. 12A. However, contrary to FIG. 12A,
one of the clusters 4 has a general circular shape instead of
elliptical.

FIG. 13Billustrates how THUMB handles such a situation.
The first 10 and second 20 color values are positioned on the
first line 40 having the first direction 45. The first color value
10 is modified by a color modifier to generate a first 30 and a
second 32 color representation positioned on the second line
12 having the second direction 15. In this pattern/mode, the
color representations available for the image elements are the
first 30 and second 32 color representation, the first color
value 10 and the second color value 20. Each color index
selected for the image elements is associated with one of these
four possible representations.

If instead the iPACKMAN/ETC scheme is employed in
step S22 of FIG. 10, a first color codeword is determined in
step S30 as a representation of a first color value. In this step
S30, a second color codeword is also determined. However,
this second codeword is a representation of a differential
color. A second color value is then obtainable as a sum of the
first color value and the differential color image elements in a
first sub-block (2x4 or 4x2 image elements) are assigned the
first color value whereas image elements in a second sub-
block (2>4 or 4x2 image elements) are assigned the second
color value.

An intensity codeword is provided in step S31, where the
intensity codeword is a representation of a set of multiple
intensity modifiers. These intensity modifiers are applicable
for modifying the intensity of the first or second color value to
generate multiple color representations. In a preferred imple-
mentation, the intensity codeword is a table index to an inten-
sity table comprising multiple modifier sets. Where the modi-
fier sets have different intensity modifiers. In step S32, an

10

15

20

25

30

35

40

45

50

55

60

65

20

intensity index is selected for each image element in the
block, where the intensity index is associated with an inten-
sity modifier from the intensity modifier set represented by
the intensity codeword.

FIG. 14 schematically illustrates a possible compressed
block representation 700 for the iPACKMAN/ETC differen-
tial mode. The compressed block 700 includes the first color
codeword 710 including three color components, red 712,
green 714 and blue 716, preferably each represented by five
bits. The second color or differential color codeword 720
likewise includes three components, red 722, green 724 and
blue 726, preferably each represented by three bits. The com-
pressed block 700 further includes two intensity codewords
750A, 750B, one for each 2x4/4x2 sub-block, preferably
each of 3 bits. A sequence 760 of intensity indices, preferably
one 2-bit intensity index per image element in the block, is
also included in the compressed block 700, resulting in 32
bits. A flipbit 770 defines whether the two sub-blocks of the
image block is two 2x4 block or two 4x2 blocks, i.e. placed
vertically flipbit=0,,,, or horizontally flipbit=1,,,. iPACK-
MAN/ETC comprises two so-called default modes, of which
one has been described and disclosed in the present docu-
ment. A diffbit 780 discriminates between these two default
modes. In FIGS. 14 to 17, this diffbit 780 is equal and set to
14 (or 0,,). Note that the mutual order of the codewords
710, 720, 750 A, 750B, index sequence 760, flipbit 770 and
diffbit 780 of the encoded image block 700 may differ from
what is illustrated in the figure. The total size of the com-
pressed block is 64 bits.

In the iPACKMAN/ETC mode mentioned above, the color
components 712, 714, 716 of the first color codeword 710
preferably each comprises 5 hits, basically representing any
vale in the interval 0-31 (00000,,-11111,, ). The compo-
nents 722, 724, 726 of the second codeword 720 preferably
each comprises 3 bits, which are used for representing a value
in the interval -4 to +3. The color components of the second
color value is obtainable by summing the components 712,
714, 716; 722, 724, 726 of the two codewords:

Red component=R+dR
Green component=G+dG

Blue component=B+dB.

Since these color components represent intensity informa-
tion, they are allowed to assume the values from O (no inten-
sity)to 31 (full intensity). This means that bit combinations of
the first color codeword 710 and the second color codeword
720 that result in that the additions R+dR, G+dG, B+dB will
overflow, i.e. be <0 or >31 will never be used by the encoder
operating in this iPACKMAN/ETC mode. This allows for
introducing three auxiliary modes that can be used to comple-
ment iPACKMAN/ETC.

In the first auxiliary mode, the red component overflows,
i.e. R+dR is smaller than zero or larger than 31. This happens
if the first three bits of the red component 712 of the first color
codeword 710 are equal and different from the first bit of the
red component 722 of the second color codeword 720.

In FIG. 15, this principle is employed for using the H-pat-
tern/mode of THUMB as an auxiliary mode to iPACKMAN/
ETC. Thus, in this mode four bits 790 cannot be selected
freely since the red components must overflow, which hap-
pens if these four bits 790 are equal to 1110,,,, or 0001, . The
compressed block representation 700 is preferably in total 64
bits, of which four has been used according to above. The
remaining 60 bits are preferably divided between the includ-
ing pans according to; 4 bits are assigned to each color com-



US 9,087,365 B2

21

ponent 712, 714, 716; 722, 724, 726 of the first 710 and
second 720 color codewords. The color modifier codeword
750 comprises three bits, the diffbit 780 one bit (which has the
same value as in FIG. 14) and the color index sequence 760
preferably 32 bits.

A second auxiliary mode is obtainable if the green compo-
nent overflows, i.e. G+dG is smaller than zero or larger than
31 and the red component is not allowed to overflow, i.e.
0=R+dR=31. In this mode, the first bit of the red component
712 of the first color codeword in FIG. 14 is set different from
the second or third bit of the red component 712. In addition,
the first three bits of the green component 714 of the first color
codeword 710 must be equal and different from the first bit of
the green component 724 of the second color codeword 720.

In FIG. 16, bit0 (corresponds to first bit of red component
in first color codeword in FIG. 14), bit8-bit10 (correspond to
three first bits of green component in first color codeword in
FIG. 14) and bit13 (corresponds to first bit of green compo-
nent in second color codeword in FIG. 14), collectively rep-
resented by 790 in the figure, cannot be set freely. Therefore,
59 bits remain to use for the other parts of the compressed
block 700. The division of bits among the color codewords
710, 720, color modifier codeword 750, diffbit 780 and color
index sequence 760 is preferably the same as for FIG. 15
except that the color modifier codeword 750 in this case only
comprises two bits instead of three.

A third auxiliary mode using the scheme of the present
invention is available if the blue component overflows, i.e.
B+dB is smaller than zero or larger than 31, but the red and
green components are not allowed to overflow. This means
that the first bit of the red 712 and green 714 component of the
first color codeword 710 in FIG. 14 must differ from the
second or third component in the red 712 and green 714
components. In addition, the blue component overflows, i.e.
B+dB is smaller than zero or larger than 31.

In FIG. 17, therefore bit0 (corresponds to first bit of red
component in first color codeword in FIG. 14), bit8 (corre-
sponds to the first hit of green component in first color code-
word in FIG. 14), bit16-bit18 (correspond to three first bits of
blue component in first color codeword in FIG. 14) and bit21
(corresponds to first bit of blue component in second color
codeword in FIG. 14), collectively denoted 790, cannot be set
freely. The red 712, 722, 732 and blue 716, 726, 736 compo-
nents of three color codewords 710, 720, 730 are preferably
assigned 6 bits each, whereas the corresponding green com-
ponents 714, 724, 734 comprise 7 bits each and the than 780
is one bit. This amounts, in total, to 64 bits.

If the four different compressed representations illustrated
in FIGS. 14-17 are possible, a mode index used for discrimi-
nating between the four modes preferably includes defined
positions in the bit sequences. These bit positions include the
three first bits of the red, green and blue component of the first
color codeword and the first bit of the red, green and blue
component of the second color codeword in FIG. 14. In
addition, the diffbit is preferably used to discriminate
between the other available iPACKMAN/ETC mode. Note,
however, that some of the hits of this mode index can be used
for encoding the compressed block in the different modes.
Decompression

FIG. 18 illustrates a flow diagram of a method of decoding
an encoded image or encoded version of an original image
according to the present invention. The encoded image basi-
cally comprises several encoded representations of image
blocks. These encoded block representations are preferably
generated by the image encoding method discussed above.

The method generally starts by identifying encoded image
block(s)to decode. It could be possible that all encoded image

20

35

40

45

50

22

blocks of an encoded image should be decoded to generate
decoded representation of the original image. Alternatively,
only a portion of the original image is to be accessed. As a
consequence, only a selected number of image blocks have to
be decoded for more precisely, a selected amount of image
elements of certain image blocks have to be decoded).

Once the correct encoded (representation(s) of) image
block(s) is identified, step S40 determines at least two color
values based on the at least two color codewords in the com-
pressed block representations. In a preferred implementation,
this determining step involves expanding the quantized color
of the color codeword, such as RGB676, into, preferably, 24
hits (RGB888). If the second color codeword comprises dif-
ferential color components, these components are preferably
added to corresponding components of the first color code-
word before expansion to generate a second color value. In a
preferred implementation of the present invention, the com-
pressed block representation comprises three color code-
words. This means that three color values are determined in
step S40 by extending each of the codeword.

The following to steps S41 and S42 are performed for each
image element that is to be decoded, which is schematically
illustrated by the line L5. In step S41, the color weights
assigned to the image element to be decoded is provided. The
color weights are preferably pre-defined weights, which
depend on the actual position of the image element in the
blocks:

wo” =fox.y)
Wi ~fu%.3)

Wi =fp(x,y)

Thus, all image blocks of the image compressed according
to the present invention has preferably the same assignment
of color weights so that an image element in, for example,
position (2,1) in a first block will have the same color weights
as an image element in position (2,1) in a second block.

However, it is anticipated by the present invention that
there might be choice in the weight assignment that is per-
formed block by block. In such a case, the compressed rep-
resentation preferably comprises a weight codeword. This
means that the weight provision in step S41 is then performed
based on the weight codeword, i.e. the set of color weights
used for the current block is identified based on the weight
codeword.

In a next step S42, the color representation used for repre-
senting the original color of the image element to be decoded
is calculated based on the provided color weights and the
determined at least two color values. In a preferred imple-
mentation, the color representation is calculated as weighted,
using the provided weights, (linear) combination of the deter-
mined color values. In this context, all the color values are
preferably used in the calculation, but it could be possible to
use only a subset thereof.

Steps S41 and S42 could be performed for several image
elements in the image block (schematically illustrated by line
L5). It is anticipated by the invention that in some applica-
tions, only a single image element is decoded from a specific
image block, multiple image elements of a specific image
block are decoded and/or all the image elements of a specific
block are decoded.

Steps S40 to S42 are then preferably repeated for all image
blocks that comprise image elements that should be decoded
(schematically illustrated by line 1.6). This means that the
loop of steps S40 to S42 could be performed once, but most



US 9,087,365 B2

23

often several times for different encoded image blocks and/or
several times for a specific encoded image block.

In the optional step S43, a decoded representation of the
original image, or a portion thereof, is generated based on the
decoded image elements and blocks. The method then ends.

FIG. 19 is a flow diagram of a multi-mode implementation
of the image and block decoding/decompression of the
present invention. The method starts in step S50, where a
decompression mode to use for the current block is selected
based on a mode index. If the four different compressed
representations illustrated in FIGS. 14-17 are possible, the
mode index includes the diffbit, the three first bits of the red,
green and blue component of the first color codeword and the
first bit of the red, green and blue component of the second
color codeword in FIG. 14. Thus, the decoder investigates
these bit positions in the bit sequence that constitutes the
compressed block representation and selects which decom-
pression mode based on the investigated bits. In a preferred
implementation, a first compression mode is selected if the
blue color component overflows but not the red and greens. A
second and a third mode, is selected if the red component
overflows or the green component overflows but not the red.
Ifnone of the components overflow, a fourth mode is selected
in step S50.

If the first mode is selected in step S50, the method con-
tinues to step S51, where the block is decompressed accord-
ing to this mode. This corresponds to performing the steps
S40-S42 illustrated in FIG. 18. If a second, third or fourth
mode is instead selected, the method continues to step S52,
S53 or S54.

FIG. 20 illustrates the decompression performed according
to the THUMB mode. Starting in step S60, a first color value
is determined based on the first color codeword. A second
color value is determined based on the second color codeword
in the step S61. These two color values are located on a first
line having a first direction in color space (see FIGS. 12B and
13B). The color determinations of steps S60 and S61 prefer-
ably involve expanding the bit sequence of the codewords to
generate the color values. A next step S62 generates multiple
color representations along a second line having a second
direction in color space by modifying the first color value
with at least one color modifier represented by the color
modifier codeword. This second direction is different from
the first direction. The next step S63 is performed per image
element to be decoded, which is schematically illustrated by
the line L.7. This step S63 involves selecting, based on the
color index sequence and more precisely the color index
assigned to the relevant image element, a color representation
from i) the multiple color representations along the second
line and 1ii) at least one color representation bases on the
second color value. In the H-pattern/mode, at least one color
modifier provided based on the modifier codeword is also
used for modifying the second color value along a third line
having a third direction (different from the first direction) to
generate multiple color representations. Thus, two sets of
multiple color representations (one located on the second line
and the other located on the third line) are available in this
H-pattern and the color index of the image elements points to
one of the representations in the two sets. In the T-pattern/
mode, the multiple color representations on the second line
are complemented with the first and second color value that
can also be selected as color representations for the image
elements. The method then continues to step S43 of FIG. 18.

Ifinstead the iIPACKMAN/ETC mode is selected based on
the mode index, a color value is determined based on the first
color codeword or the first and second color codeword in step
S70 of FIG. 21. The color value is, if the image element to be

10

15

20

25

30

35

40

45

50

55

60

65

24

decoded is present in a first (2x4/4x2) sub-block, determined
based on the first color codeword, preferably by expanding
the bit sequence of the codeword from RGBS555 into
RGBS888. If the image element is instead is present in a
second (2x4/4x2) sub-block, the color value is determined
based on both the first and second color codeword, basically
by adding the red components, green components and blue
components of the first and second codewords and then
expanding the result into RGB888 or alternatively first
expanding the codeword components and then adding them).
The compressed block comprises, in this mode, two intensity
codewords, one per sub-block. The intensity codeword
assigned to the sub-block comprising the image element to be
decoded is used in step S71 to provide a set of multiple
intensity modifiers. This step preferably comprises provid-
ing, based on the intensity codeword, the modifier set from a
table comprising multiple such modifier sets. An intensity
modifier to use for the image element is selected in step S72
from the provided modifier set based on the intensity index
assigned to the image element. In the next step S73, the
determined color value is intensity modified by the selected
modifier to generate a color representation for the image
element. The steps S70 to S73 are preferably repeated for all
image elements in the block that are to be decoded. The
method then continues to step S43 of FIG. 18.

Decompression Examples

Herein follows decompression examples using a bit
sequence layout as illustrated in FIGS. 14 to 17.
iPACKMAN/ETC

The compressed image block is represented by the follow-
ing bit sequence:

10110010 11010 110 00100 000 101 1101 1
100111000101 1011100011 00010100 01

Firstly, bit0-bit2, bit6, bit8-10, bitl3, bit16-18, bit21 and
the diffbit 780 are investigate to determine which decompres-
sion mode to use for this image block. Since none of the color
components overflow and the diftbit 780 is set to 1, the
differential default mode of iPACKMAN/ETC should be
selected.

Firstly, the color components 712, 714, 716 of the first
color codeword 710 are expanded into RGB888 to generate
the first color value:

Red: 10110,,,=> 101101,,,~181.
Green: 11010,,,=> 11010110,,,=214

Blue: 00100,,,=> 00100001 ,,=33

The differential components 722, 724, 726 of the second
color codeword 720 are added to these components to obtain
the second color value:

Red: 010,,,¢>2=> 181+2-183
Green: 110,,,$> 2= 214-2=212

Blue: 000,,,¢=> 0=> 33+2=33

The flipbit is set to 1,,,,, which implies that the first color
value is assigned to the eight image elements in the two
uppermost rows of the 4x4 block, whereas the second color
value is used for the eight image elements in the two lowest
rOws.

The two intensity codewords 750A, 750B point an inten-
sity table, exemplified by Table 8 below:



US 9,087,365 B2

25
TABLE 8

intensity table

intensity
codeword 114, 10,;, 004, 014,
000,,,, -8 -2 2 8
001,,, -12 -4 4 12
010,,, -31 -6 6 31
011, 34 -12 12 34
100,,, -50 -8 8 50
101,,, -57 19 19 57
104, 80 -28 28 80
111,,, -127 —42 42 127

The first intensity codeword 750A applicable for image
elements in the first 2x4 sub-block is 101,,,, representing the
intensity modifiers -57, —19, 19, 57. The second intensity
codeword 750B instead represents the intensity modifiers
-80, -28, 28, 80.

The first image element in position (0,0) will have the
following color representation:

(181,214,33)+(-19,-19,-19)=(162,195,14)

Correspondingly, the color representation of the last image
element (in position (3,3)) is calculated as follows:

(183,212,33)+(80,80,80)=(255,255,113)

after clamping the calculated color component values
between the minimum allowed value of 0 and the maximum
value of 255.

This procedure is then continues for the rest of the image
elements in the image blocks.
H-Pattern of THUMB

The compressed image block is represented by the follow
bit sequence:
111 10010 1101 0110 0010 0000 1011 101 1
100111000101 1011 1000 110001010001

In this case, the bits bit0-bit2 are all equal and different
from bit5, which means that the rod component overflows and
afirstauxiliary mode, i.e. THUMB H-pattern, should be used.
The bit sequence presented above has the layout as illustrated
in FIG. 15.

The first and second color values are generated by expand-
ing the components 712, 714, 716; 722, 724, 726 of the two
color codewords 710, 720:

Red 0: 1010,,,=> 101010, =170
Green 0: 1101,,=> 11011101,,,=221
Blue 0: 0110,,,= 01100110,,,=102
Red 1: 0010,,, = 00100010,,,=34
Green 1: 0000, = 00000000,,,0

Blue 1: 1011,,,=> 10111011,,,=187

The first color value is, thus, (170, 221, 102) and the second
value is (34, 0, 187).

The modifier codeword 750 101,,,=5 implies that the num-
ber 1,,, should be shifted five times leftwards to obtain
100000,,,32. This value is used to modify the two color
values to obtain four color representations:

C0: (170,221,102)-(32,32,32)=(138,189,70)

C1: (170,221,102)+(32,32,32)=(202,253,134)

10

15

20

25

30

35

40

45

50

55

60

26

C2: (34,0,187)—(32,32,32)=(2,0,155)

C3: (34,0,187)+(32,32,32)=(66,32,219)

The first image element: has color index 10,,,, which
implies that color representation C2 is used for this image
element. This procedure is continued for the rest: of image
elements (index 00,,,<> CO, 01,,, < C2, 10,,,¢>C2 and
11,,,¢> C3).

T-Pattern THUMB

The compressed image block is represented by the ming bit
sequence:

101100100001 01 100 0100 0001 0111 01 1
10011100010110111000110011 010001

In this case, the green component overflows since bit8-
bit10 are equal and different from bit12. In addition, the red
component does not overflow since bit0 is different from bit1.
This means that a second auxiliary decompression triode in
the form of T-pattern of THUMB should be selected and the
bit sequence is interpreted as having the layout of FIG. 16.

The two color values are calculated in the same way as
above for the P-pattern.

Red 0: 0110,,,=> 01100110,,,,=102
Green 0: 0101,;,=> 01010101 ,,,=85
Blue 0: 0100,,,=> 01000100,,,=68
Red 1: 0100,,,=> 01000100,,,=68
Green 1: 0001, = 00010001 ,,,=17

Blue 1: 0111,, = 01110111,, =119

In this case the color modifier 750 includes only two bits
01,,,=1, which implies that the number 1,,, should be shifted
leftward one: step to obtain 10,,,=2. Two of the four possible
color representations are calculated using this modifier value,
whereas the other two representations are equal to the two
color values:

C0: (102,85,68)
C1: (102,85,68)~(2,2,2)=(100,83,66)
€2: (102,85,68)+(2,2,2)=(104,87,70)

C3: (68,17,119)

The first image element has color index 10,,,,, which cor-
responds to C2. The procedure is then repeated for the rest of
the image elements in the block.

PLANAR

The compressed image block is represented by the follow-
ing bit sequence:

1011001 00101011 0000001 010 111001 1
1001110 001011 011100 0110001 010001

In this example, the blue component overflows since bit16-
bit18 are equal and different from bit21. In addition, bit0 is
different from bit1 (red does not overflow) and bit8 is difter-
ent from bit9 (green does not overflow). As a consequence, a
fourth decompression mode as defined in the present inven-
tion, PLANAR, should be used.

In this example, three color values are calculated by
expanding the color components 712, 714, 716; 722, 724,
726,732,734, 736 of the three color codewords 710, 720, 730
into RGB88S.

Ry: 011001,,,=> 1100101,,,=101

G 0101011, => 01010110,,=86



US 9,087,365 B2

27

Bz 000010,,,=> 000010000,,,=8
Ry 111001,,=> 11100111,,,=231
Gt 1001110,,,=> 10011101,,=157
By 001011,,=> 00101100,,,=44
Ry 011100,,,=> 01110001,,,=113
Gy 0110001 ,,,=> 01100010,,=98

By 010001 ,,=> 01000101,,,=69

These color values are then weighted and combined
according to the teachings of Table 6 above. The color repre-
sentation for the first image element (0,0) is simply the first
value (101, 6, 8). The color representation for image element
(1,0) is three fourths thirds of the first color value and one
fourth of the second color value, i.e.

3 1
7101, 86, 8) + (231, 157, 44) = (133, 104, 17).

This procedure is continued for the rest of the image elements
to provide a decoded representation of the image block.
Implementation Aspects

The image encoding (image block encoding) and image
decoding (image block decoding or processing scheme
according to the present invention could be provided in a
general data processing system, e.g. in a user terminal or other
unit configured for processing and/or rendering images. Such
a terminal could be a computer, e.g. PC, a game console or a
thin client, such as a Personal Digital Assistance (PDA),
mobile unit and telephone.

User Terminal

FIG. 22 illustrates a user terminal 100 represented by a
mobile unit. However, the invention is not limited to mobile
units by could be implemented in other terminals and data
processing units, such as PC computers and game consoles.
Only means and elements in the mobile unit 100 directly
involved in the present invention are illustrated in the figure.

The mobile unit 1110 comprises a (central) processing unit
(CPU) 200 for processing data, including image data, within
the mobile unit 100. A graphic system 130 is provided in the
mobile unit 100 for managing image and graphic data. In
particular, the graphic system 130 is adapted for rendering or
displaying images on a connected screen 120 or other display
unit. The mobile unit 100 also comprises a storage or memory
140 for storing data therein. In this memory 140 image data
may be stored, in particular encoded image data (encoded
image blocks) according to the present invention.

Animage encoder 210 according to the present invention is
provided in the mobile unit 100. This encoder 210 is config-
ured for encoding an image or texture into an encoded repre-
sentation of the image (or texture). As was discussed above,
such an encoded representation comprises a sequence or file
of multiple encoded image blocks. This image encoder 210
may be provided as software running on the CPU 200, as is
illustrated in the figure. Alternatively, or in addition, the
encoder 210 could be arranged in the graphic system 130 or
elsewhere in the mobile unit 100.

An encoded representation of an image from the block
encoder 210 may be provided to the memory 140 over a
(memory) bus 150, for storage therein until a subsequent
rendering of the image. Alternatively, or in addition, the
encoded image data may be forwarded to an input and output

10

15

20

25

30

35

40

45

50

55

60

65

28

(I/0) unit 110 for (wireless or wired) transmission to other
external terminals or units. This I/O unit 110 can also be
adapted for receiving image data from an external unit. This
image data could be an image that should be encoded by the
image encoder 210 or encoded image data that should be
decoded. It could also be possible to store the encoded image
representation in a dedicated texture memory provided, for
example, in the graphic system 130. Furthermore, portions of
the encoded image could also, or alternatively, be (tempo-
rarily) stored in a texture cache memory, e.g. in the graphic
system 130.

An image decoder 220 according, to the present invention
is provided in the mobile unit 100 for decoding an encoded
image in order to generate a decoded image representation.
This decoded representation could correspond to the whole
original image or a portion thereof. The image decoder 220
provides decoded image data to the graphic system 130,
which in turn typically processes the data before it is rendered
or presented on the screen 120. The image decoder 220 can be
arranged in the graphic system 130, as is illustrated in the
figure. Alternatively, or in addition, the decoder 200 can be
provided as software running on the CPU 200 or elsewhere in
the mobile unit 100.

The mobile unit 100 could be equipped with both an image
encoder 210 and an image decoder 220, as is illustrated in the
figure. However, for some terminals 100 it could be possible
to only include an image encoder 210. In such a case, encoded
image data could be transmitted to another terminal that per-
forms the decoding and, possibly, rendering of the image.
Correspondingly, a terminal 100 could only include an image
decoder 220, i.e. no encoder. Such a terminal 100 then
receives a signal comprising encoded image data from
another terminal and decodes it to generate a decoded image
representation. Thus, the encoded image signal could be
wirelessly be transmitted between terminals using radio
transmitter and receiver. Alternatively, other techniques for
distributing images and encoded image representations
between terminals according to the invention could be
employed, such as Bluetooth®, IR-techniques using IR ports
and wired transferring of image data between terminals. Also
memory cards or chips that can be connected and exchanged
between terminals could be used for this image data inter-
terminal distribution.

The units 110, 130, 200, 210 and 220 of the mobile unit 100
may be provided as software, hardware or a combination
thereof.

Image Encoder

FIG. 23 illustrates a block diagram of an embodiment of an
image encoder 210 according to the present invention. The
encoder 210 typically comprises an image decomposer 215
for decomposing or dividing an input image into several
image blocks. The decomposer 215 is preferably configured
for decomposing the image into image blocks comprising
sixteen image elements (pixels, texels or voxels), i.e. having
a general size of 4x4 image elements. This decomposer 215
could be adapted for decomposing different input images into
image blocks with different sizes. In such a case, the decom-
poser 215 preferably receives input information, enabling
identification of which image block format to use for a given
image.

This embodiment of the image encoder 210 comprises a
single block encoder 300. This block encoder 300 encodes the
image block(s) received from the image decomposer to gen-
erate encoded block representation(s). The overall sin of the
block representation is smaller than the corresponding site of
the uncoded image block. The block encoder 300 is prefer-



US 9,087,365 B2

29

ably configured for processing (encoding) each image block
from the decomposer 215 sequentially.

In an alternative implementation, the encoder 210 includes
multiple block encoders 300 for processing multiple image
blocks from the image decomposer 215 in parallel, which
reduces the total image encoding time.

The units 215 and 300 of the image encoder 210 may be
provided as software, hardware or a combination thereof. The
units 215 and 300 may be implemented together in the image
encoder 210. Alternatively, a distributed implementation is
also possible with some of the units provided elsewhere in the
mobile unit.

Block Encoder

FIG. 24 illustrates a block diagram of an embodiment of a
block encoder 300 according to the present invention, such as
the block encoder of the image encoder in FIG. 23. The
encoder 300 comprises a weight assigner 310 for assigning
color weights to at least one subset of the image elements in
an image block that is to be compressed. In a preferred imple-
mentation, the weight assigner 310 assigns Z color weight per
image element in the block, where Z is a multiple number
which is equal to the number of color codewords a color
quantizer 320 determines for the image block. In another
preferred embodiment, the assigner 310 assigns color
weights to the image elements in a block so that color com-
ponent values of at least one color component of color repre-
sentations used for representing the original colors of the
image elements change monotonically along a row or/and
column of image elements in the block. The weight assign-
ment performed by the assigner 310 of the block encoder 300
to image elements in a block is preferably conducted based on
the position of the image elements, i.e. the relative coordi-
nates of the image elements in the block.

The color quantizer 320 of the block encoder 300 is
arranged for determining, based at least partly on the color
weights assigned by the assigner 310, at least two color code-
words for the image block. In a preferred implementation, the
color quantizer 320 determines three color codewords, pref-
erably three RGB676 codewords.

The units 310 and 320 of the block encoder 300 may be
provided as software, hardware or a combination thereof. The
units 310 and 320 may be implemented together in the block
encoder 300. Alternatively, a distributed implementation is
also possible with some of the units provided elsewhere in the
image encoder.

FIG. 25 is a schematic block diagram of another embodi-
ment of a block encoder 300 according to the present inven-
tion. This block encoder 300 is adapted for operating accord-
ing to different compression modes, preferably four different
modes. In a first compression mode, the weight assigner 310
and color quantizer 320 are operated according to the discus-
sion above in connection with FIG. 24. This, thus, results in a
compressed image block comprising three color codewords
and a mode index, which is to be described thither below. An
example of such a compressed block is illustrated in FIG. 17.

In the iPACKMAN/ETC compression mode, the color
quantizer 320 is operated for determining a first color code-
word that is a representation of a first color value and for
determining a second color codeword as a representation of a
differential color, which can be added to the first color value
to obtain a second color value. A modifier quantizer 340 is
operated in this mode for determining at least one, preferably
two, intensity codewords as representation of at least one set
of multiple intensity modifiers used for modifying the first or
second color value to obtain color representations. The inten-
sity codewords are preferably table indices to a modifier table
500 comprising multiple such modifier sets. An index selector

10

15

20

25

30

35

40

45

50

55

60

65

30

350 is provided in the block encoder 300 for determining, for
each image element in the block, an intensity index associated
with one of the intensity modifiers in the modifier set(s)
represented by the intensity codeword(s).

In the two THUMB modes, the color quantizer 320 deter-
mines a first color codeword as a representation of a first color
value. In addition, the quantizer 320 determines a second
codeword as representation of a second color value, where
these two values are located on a first line with a first direction
in color space. The modifier quantizer 340 is operated in this
mode for providing a color modifier codeword as a represen-
tation of at least one color modifier applicable for modifying
the first color value along a second line having a second
direction in color space. This color modification results in
multiple color representations along the second line. The
second and first directions are non-parallel. The index selec-
tor 350 then selects, for each image element, a color index
associated with a color representation selected from 1) the
color representations along the second line and ii) at least one
color representation based on the second color value.

In a preferred implementation, multiple compressed can-
didate representations are determined for a given image
block, one representation per compression mode. A mode
selector 360 is then implemented for selecting which of the
candidate representations that should be used as compressed
representation for the image block. This selection is prefer-
ably performed based on a comparison of error estimates, one
such estimate per compression mode. The candidate that is
leads to a smallest error is preferably selected by the mode
selector 360. A mode index manager 370 then compiles a
mode index representative of the compression mode resulting
in the smallest error, i.e. the mode used when generating the
candidate selected by the mode selector 360. This mode
index, constitutes a part of the compressed image block.

The units 310 to 370 of the block encoder 300 may be
provided as software, hardware or a combination thereof. The
units 310 to 370 and 500 may be implemented together in the
block encoder 300. Alternatively, a distributed implementa-
tion is also possible with some of the units provided else-
where in the image encoder.

Image Decoder

FIG. 26 illustrates a block diagram of an embodiment of an
image decoder 220 according to the present invention. The
image decoder 220 preferably comprises a block selector 222
that is adapted for selecting, e.g. from a memory, which
encoded image block(s) that should be provided to a block
decoder 400 for decoding. The block selector 222 preferably
receives input information associated with the encoded image
data, e.g. from a header or a rendering engine. An address of
an encoded image block having, the desired image element(s)
is then computed based on the input information. This com-
puted address is preferably dependent upon the image-ele-
ment (pixel, texel or voxel) coordinates within an image.
Using the address, the block selector 222 identifies the
encoded image block from the memory. This identified
encoded image block is then fetched from the storage and
provided to the block decoder 400.

The (random) access to image elements of an image block
advantageously enables selective decoding of only those por-
tions of an image that are needed. Furthermore, the image can
be decoded in any order the data is required. For example, in
texture mapping only portions of the texture may be required
and these portions will generally be required in a non-sequen-
tial order. Thus, the image decoding of the present invention
can with advantage by applied, to process only a portion or
section of an image.



US 9,087,365 B2

31

The selected encoded image block is then forwarded to the
block decoder 400. In addition to the image block, the
decoder 400 preferably receives information specifying
which image elements of the block that should be decoded.
The information could specify that the whole image block,
i.e. all image elements therein, should be decoded. However,
the received information could identify only a single or a few
of the image elements that should be decoded. The block
decoder 400 then generates a decoded representation of the
image element(s) in the block. This decoded representation is
preferably a P-bit color, where P is the number of bits per
image element in the original image, e.g. a 24-bit RGB color.

An optional image composer 224 could be provided in the
image decoder 220. This composer receives the decoded
image elements from the block decoder 400 and composes
them to generate a pixel that can be rendered or displayed on
a screen. This image composer 224 could alternatively be
provided in the graphic system.

Alternatively, the image decoder 220 comprises multiple
block decoders 400. By having access to multiple block
decoders 400, the image decoder 220 can process (decode)
multiple encoded image blocks in parallel. These multiple
block decoders 400 allow for parallel processing that
increases the processing performance and efficiency of the
image decoder 220.

The units 222, 224 and 400 of the image decoder 220 may
be provided as software, hardware or a combination thereof.
The units 222, 224 and 400 may be implemented together in
the image decoder 220. Alternatively, a distributed imple-
mentation is also possible with some of the units provided
elsewhere in the user terminal.

Block Decoder

FIG. 27 is an illustration of an embodiment of a block
decoder 400 according, to the present invention. The block
decoder 400 comprises as color generator 410 that generates
at least two color values based on the at least two color
codewords in the compressed block representation. This
color generator 410 is preferably configured for expanding, or
extending the quantized color components of the color code-
words into, preferably, RGB888. A weight manager 420 is
arranged in the block decoder 400 for providing, for each
image element that should be decoded, color weights
assigned to the image element(s). In a preferred implementa-
tion, corresponding image elements in a given position in
different image blocks have same assigned color weights.
Thus, the color weights are dependent on the coordinates or
positions of the image elements in the block but do not change
for different blocks compressed according to the present
invention. The weight manager 420 therefore preferably pro-
vides color weights based on image elements positions/coor-
dinates in the image block.

A color calculator 430 is connected to the color generator
410 and the weight manager 420 and uses the provided color
weights and the generated color values for determining a
color representation to use as a representation of the original
color of the image element. The calculator 430 is preferably
implemented for combining the color values from the gen-
erator 410 but weighted with the color weights from the
weight manager 420.

The units 410 to 430 of the block decoder 400 may be
provided as software, hardware or a combination thereof. The
units 410 to 430 may be implemented together in the block
decoder 400. Alternatively, a distributed implementation is
also possible with some of the units provided elsewhere in the
image decoder.

FIG. 28 is a schematic block diagram of another embodi-
ment of a block decoder 400 according to the present inven-

10

15

20

25

30

35

40

45

50

55

60

65

32

tion adapted for multi-mode operation. The block decoder
400 comprises a mode selector 460 that selects which decom-
pression mode out of multiple available modes, preferably
four modes, to use when decompressing the current com-
pressed block representation. This mode selector 460 uses a
mode index in the compressed block for selecting the correct
mode.

If the selector 460 selects a first decompression mode, the
color generator 410, weight manager 420 and color calculator
430 are operated as described in the foregoing in connection
with FIG. 27.

If the selector 460 instead selects a second decompression
mode, corresponding to iPACKMAN/ETC, the color genera-
tor 410 determines a color value based on the first color
codeword or based on the first and second color codeword
(depending on the actual position of the image element in the
block). In the former case, the quantizer component colors are
simply extended into preferably RGB88S. In the latter case,
the differential components of the second codeword are
added to the color components derivable from the first code-
word to determine the color value. A modifier manager 470 is
provided in the block decoder 400 for providing, based on one
of the at least one intensity codewords, a set of multiple
intensity modifiers, preferably from a modifier table 500. A
color selector 450 selects, using an intensity index associated
with the current image element, one of the intensity modifiers
from the provided set. A color modifier 440 then uses this
selected intensity modifier to intensity modify the color value
to calculate a color representation for the image element.

If the THUMB modes are selected by the mode selector
460, the color generator 410 determines a first color value
using the first color codeword and determines a second color
value based on the second color codeword. The two values are
located on a first line having a first direction in color space.
The color modifier 440 generates multiple color representa-
tions along a second line having a second different direction
by modifying the first color value with at least one color
modifier represented by the color modifier codeword. The
color selector 450 then selects, based on the color index
sequence, a color representation from i) the multiple color
representations along the second line and ii) at least one color
representation based on the second color value.

The units 410 to 470 of the block decoder 400 may be
provided as software, hardware or a combination thereof. The
units 410 to 470 and 500 may be implemented together in the
block decoder 400. Alternatively, a distributed implementa-
tion is also possible with some of the units provided else-
where in the image decoder.

It will be understood by a person skilled in the art that
various modifications and changes may be made to the
present invention without departure from the scope thereof,
which is defined by the appended claims.

REFERENCES

[1] Delp, Mitchell: Image Compression using Block Trunca-
tion Coding. IEEE Transactions on Communications 2, 9
(1979), 1335-1342

[2] Campbell, Defant, Frederiksen, Joyce, Leske, Lindberg,
Sandia: Two Bit/Pixel Full Color Encoding. In Proceeding
of SIGGRAPH (1986), vol. 22, pp. 215-223

[3] U.S. Pat. No. 5,956,431

[4] S. Fenney, “Texture compression using low-frequency
signal modulation”, Graphics Hardware 2003, pp. 84-91,
July 2003

[5] International application WO 2005/059836

[6] International application WO 2006/006915



US 9,087,365 B2

33
[7] Strom, Akenine-Méller: iPACKMAN high-quality, low
complexity texture compression for mobile phones,

Graphics Hardware 05, Los Angeles, USA, June 2005
[8] Strom, Pettersson: “Texture compression: THUMB—

Two Hues Using Modified Brightness”, SIGRAD 05,

Lund, Sweden, November 2005

The invention claimed is:

1. A method of processing a compressed representation of
an image block comprising multiple image elements, said
compressed representation comprising at least two color
codewords, and said method in a system comprising the steps
of:

determining, by the system, at least two color values based

on said at least two color codewords, wherein said color
codewords are quantized color values;
for at least one image element in said image block:
providing, by the system, color weights assigned to said at
least one image element based on a position of said
image element within said image block; and

calculating, by the system, a color representation based on
said provided color weights and said determined at least
two color values.

2. The method according to claim 1, wherein said provid-
ing step comprises providing said color weights based only on
a position of said image element within said image block.

3. The method according to claim 1, wherein said provid-
ing step comprises providing color weights defined in such a
way that color component values of at least one color com-
ponent of color representations change monotonically along a
row or column of image elements in said image block.

4. The method according to claim 1, wherein said com-
pressed representation comprises three color codewords and
said determining step comprises determining three color val-
ues based on three color codewords, and said calculating step
comprises calculating said color representation based on said
provided color weights and at least two color values of said
determined three color values.

5. The method according claim 1, further comprising the
steps of:

selecting, by the system, a decompression mode based on a

mode index in said compressed block representation;
and
decompressing, by the system, said compressed represen-
tation according to said selected decompression mode,

wherein said decompressing step comprises said determin-
ing, providing and calculating steps if a first decompres-
sion mode is selected based on said mode index.

6. A method of decoding an encoded image that comprises
encoded representations of image blocks, each image block
comprising multiple image elements, said method in a system
comprising the steps of:

processing, by the system, compressed representations of

image blocks to generate multiple color representations

of image elements, wherein each compressed represen-

tation comprising at least two color codewords, and

wherein the processing of each compressed representa-

tion of an image block comprises:

determining at least two color values based on at the
least two color codewords, wherein said color code-
words are quantized color values;

for at least one image element in said image block:

providing color weights assigned to said at least one
image element based on a position of said image
element within said image block; and

calculating a color representation based on said pro-
vided color weights and said determined at least two
color values; and

5

15

20

25

35

40

45

50

55

60

34

generating, by the system, a decoded representation of said
encoded image by composing said multiple color repre-
sentations of image elements.

7. A system for processing a compressed representation of
an image block comprising multiple image elements, said
compressed representation comprising at least two color
codewords, and said system comprising:

a color generator for determining at least two color values
based on said at least two color codewords, wherein said
color codewords are quantized color values;

a weight manager for providing, for at least one image
element in said image block, color weights assigned to
said at least one image element, wherein said weight
manager is arranged for providing said color weights
based on a position of said at least one image element
within said image block; and

a color calculator for calculating a color representation
based on said provided color weights and said deter-
mined at least two color values.

8. The system according to claim 7, wherein said weight
manager is arranged for providing said color weights based
only on a position of said at least one image element within
said image block.

9. The system according to claim 7, wherein said com-
pressed representation comprises three color codewords and
said color generator is arranged for determining three color
values based on three color codewords, and said color calcu-
lator is arranged for calculating said color representation
based on said provided color weights and at least two color
values of said determined three color values.

10. The system according claim 7, further comprising a
mode selector for selecting a decompression mode based on a
mode index in said compressed representation, said color
generator, weight manager and color calculator are operated
in a first decompression mode.

11. The system according to claim 7, wherein the system
comprises a user terminal.

12. A system for decoding an encoded image that com-
prises encoded representations of image blocks, each image
block comprising multiple image elements, said system com-
prising:

a processing system for processing compressed represen-
tations of image blocks to a generate multiple color
representations of image elements, wherein each com-
pressed representation comprising at least two color
codewords, and wherein the processing system pro-
cesses each compressed representation of an image
block utilizing:

a color generator for determining at least two color val-
ues based on said at least two color codewords,
wherein said color codewords are quantized color
values;

a weight manager for providing, for at least one image
element in said image block, color weights assigned
to said at least one image element, wherein said
weight manager is arranged for providing said color
weights based on a position of said at least one image
element within said image block; and

a color calculator for calculating a color representation
based on said provided color weights and said deter-
mined at least two color values; and

an image composer for generating a decoded representa-
tion of said encoded image by composing said multiple
color representations of image elements.

#* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,087,365 B2 Page 1 of 5
APPLICATION NO. : 13/826578
DATED :July 21, 2015

INVENTOR(S) : Strém

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Drawings

In Fig. 11, Sheet 6 of 15, delete “STEP 825, S27 OR S27” and insert -- STEP S25, S26 OR S27 --,
therefor.

In Fig. 19, Sheet 11 of 15, for Step “S53”, in Line 2, delete “BLOCK IN 2ND” and insert -- BLOCK
IN 3RD --, therefor.

In the Specification

In Column 1, Line 38, delete “sorting,” and insert -- sorting --, therefor.

In Column 2, Line 5, delete “block site” and insert -- block size --, therefor.

In Column 2, Line 12, delete “Penney” and insert -- Fenney --, therefor.

In Column 2, Line 59, delete “invokes™ and insert -- involves --, therefor.

In Column 2, Line 66, delete “in and n” and insert -- m and n --, therefor.

In Column 3, Line 31, delete “systems tbr” and insert -- systems for --, therefor.

In Column 3, Line 52, delete “at embodiment” and insert -- an embodiment --, therefor.
In Column 4, Line 8, delete “according,” and insert -- according --, therefor.

In Column 4, Line 20, delete “fir” and insert -- for --, therefor.

In Column 4, Line 30, delete “implementation:” and insert -- implementation; --, therefor.

Signed and Sealed this
Nineteenth Day of April, 2016

Twcbatle Z Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office



CERTIFICATE OF CORRECTION (continued) Page 2 of 5
U.S. Pat. No. 9,087,365 B2

In Column 4, Line 49, delete “invent on;” and insert -- invention; --, therefor.

In Column 4, Line 60, delete “corresponding,” and insert -- corresponding --, therefor.
In Column 5, Line 24, delete “during,” and insert -- during --, therefor.

In Column 5, Lines 27-28, delete “encoding,” and insert -- encoding --, therefor.

In Column 6, Line 9, delete “invention in” and insert -- invention. In --, therefor.

In Column 6, Line 33, delete “Firstly” and insert -- Firstly, --, therefor.

In Column 6, Line 50, delete “art” and insert -- art, --, therefor.

In Column 6, Line 54, delete “YIN™ and insert -- YUV --, therefor.

In Column 7, Line 21, delete “or the” and insert -- of the --, therefor.

In Column 7, Line 39, delete “space.” and insert -- space, --, therefor.

In Column 7, Line 45, delete “four or mare,” and insert -- four or more, --, therefor.
In Column 7, Line 50, delete “on so” and insert -- on --, therefor.

In Column 9, Line 31, delete “tows™ and insert -- rows --, therefor.

In Column 9, Line 55, delete “front what™ and insert -- from what --, therefor.

In Column 9, Line 61, delete “listed,” and insert -- listed --, therefor.

In Column 9, Line 63, delete “thr” and insert -- for --, therefor.

In Column 10, Line 62, delete “illustrated. In” and insert -- illustrated in --, therefor.
In Column 12, Line 13, delete “rust” and insert -- first --, therefor.

In Column 12, Line 15, delete “710.” and insert -- 710, --, therefor.

In Column 12, Line 20, delete “ma total” and insert -- in a total --, therefor.

In Column 13, Line 10, delete “assigned,” and insert -- assigned --, therefor.

In Column 13, Line 51, delete “calculating,” and insert -- calculating --, therefor.

In Column 15, Line 1, delete “selected,” and insert -- selected --, therefor.



CERTIFICATE OF CORRECTION (continued) Page 3 of 5
U.S. Pat. No. 9,087,365 B2

In Column 15, Line 55, delete “based. On” and insert -- based on --, therefor.

In Column 17, Line 50, delete “or” and insert -- (or --, therefor.

In Column 18, Line 21, delete “varying,” and insert -- varying --, therefor.

In Column 19, Line 5, delete “FIGS. 12-14B” and insert -- FIGS. 12A-12B --, therefor.
In Column 19, Line 6, delete “THUMB, in” and insert -- THUMB. In --, therefor.
In Column 19, Line 8, delete “space, it” and insert -- space. It --, therefor.

In Column 19, Line 26, delete “having as™ and insert -- having a --, therefor.

In Column 19, Line 55, delete “color image™ and insert -- color. Image --, therefor.
In Column 19, Line 58, delete “(2>4" and insert -- (2x4 --, therefor.

In Column 19, Line 66, delete “sets. Where” and insert -- sets, where --, therefor.
In Column 20, Line 32, delete “5 hits,” and insert -- 5 bits, --, therefor.

In Column 20, Line 38, delete “716; 722,” and insert -- 716, 722, --, therefor.

In Column 21, Line 38, delete “first hit” and insert -- first bit --, therefor.

In Column 21, Line 46, delete “than 780 and insert -- diftbit 780 --, therefor.

In Column 21, Line 57, delete “the hits” and insert -- the bits --, therefor.

In Column 22, Line 1, delete “generate” and insert -- generate a --, therefor.

In Column 22, Line 5, delete “for more” and insert -- (or more --, therefor.

In Column 22, Line 13, delete “hits” and insert -- bits --, therefor.

In Column 24, Line 9, delete “or” and insert -- (or --, therefor.

sroens 11, ¢ Y 71 prL Yy
In Column 24, Line 57, delete Green: 110,,, 2 = 214-2-212. and

~Green: 110,602 = 214-2=212

insert - -, therefor.
In Column 25, Line 34, delete “the follow” and insert -- the following --, therefor.

In Column 25, Line 39, delete “the rod™ and insert -- the red --, therefor.



CERTIFICATE OF CORRECTION (continued) Page 4 of 5
U.S. Pat. No. 9,087,365 B2

In Column 25, Line 44, delete “716; 722,” and insert -- 716, 722, --, therefor.

In Column 25, Line 55, delete « Green 1: 0000, => 00000000,,,0 » .4

inserc . GT€EN 12 000045 = 000000004,=0 _ . occ.
In Column 26, Line 6, delete “rest:” and insert -- rest --, therefor.

In Column 26, Line 10, delete “ming” and insert -- following --, therefor.

In Column 26, Line 17, delete “triode” and insert -- mode --, therefor.

In Column 26, Line 35, delete “one:” and insert -- one --, therefor.

In Column 26, Line 61, delete “716; 722,” and insert -- 716, 722, --, therefor.

In Column 26, Line 62, delete “726; 732,” and insert -- 726, 732, --, therefor.

Ro: 0110014 = 0110010145,=101

In Column 27, Line 17, delete “(101, 6, 8).” and insert -- (101, 86, 8). --, therefor.

insert -- -, therefor.
In Column 27, Line 29, delete “processing” and insert -- processing) --, therefor.
In Column 27, Line 43, delete “unit 1110 and insert -- unit 100 --, therefor.

In Column 28, Line 12, delete “according,” and insert -- according --, therefor.

In Column 28, Line 22, delete “decoder 200” and insert -- decoder 220 --, therefor.
In Column 28, Line 65, delete “sin” and insert -- size --, therefor.

In Column 28, Line 66, delete “site” and insert -- size --, therefor.

In Column 29, Line 54, delete “thither” and insert -- further --, therefor.

In Column 30, Line 35, delete “index,” and insert -- index --, therefor.

In Column 30, Line 51, delete “having,” and insert -- having --, therefor.

In Column 30, Line 66, delete “applied,” and insert -- applied --, therefor.



CERTIFICATE OF CORRECTION (continued) Page 5 of 5
U.S. Pat. No. 9,087,365 B2

In Column 31, Line 34, delete “according,” and insert -- according --, therefor.

In Column 31, Line 35, delete “as color” and insert -- a color --, therefor.

In the Claims

In Column 33, Line 58, in Claim 6, delete “based on at the” and insert -- based on the at --, therefor.
In Column 33, Line 64, in Claim 6, delete “block; and” and insert -- block; --, therefor.

In Column 34, Line 45, in Claim 12, delete “to a generate” and insert -- to generate --, therefor.

In Column 34, Line 60, in Claim 12, delete “block; and” and insert -- block; --, therefor.



